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Topics

• Review probability theory
• Bayesian inference

– From the joint distribution
– Using independence/factoring
– From sources of evidence

• Representation and Learning
– Bayes nets (a type probabilistic graphical models)
– MLE (maximum likelihood estimation)
– Naïve Bayes algorithm for inference and classification 

tasks
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Many Sources of Uncertainty

• Uncertain inputs -- missing and/or noisy data

• Uncertain knowledge

– Multiple causes lead to multiple effects

– Incomplete enumeration of conditions or effects

– Incomplete knowledge of causality in the domain

– Probabilistic/stochastic effects

• Uncertain outputs

– Abduction and induction are inherently uncertain

– Default reasoning, even deductive, is uncertain

– Incomplete deductive inference may be uncertain

Probabilistic reasoning only gives probabilistic results 
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Decision making with uncertainty

Rational behavior: for each possible action:

• Identify possible outcomes and for each

– Compute probability of outcome

– Compute utility of outcome

• Compute probability-weighted (expected) 

utility over possible outcomes

• Select action with the highest expected utility 

(principle of Maximum Expected Utility)
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Consider

• Your house has an alarm system

• It should go off if a burglar breaks
into the house

• It can go off if there is an earthquake

• How can we predict what’s happened if the 
alarm goes off?

– Someone has broken in!

– It’s a minor earthquake
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Probability theory 101
• Random variables

– Domain

• Atomic event: 
complete specification 
of state

• Prior probability: 
degree of belief 
without any other 
evidence or info

• Joint probability: 
matrix of combined 
probabilities of set of 
variables

• Alarm, Burglary, Earthquake
– Boolean (like these), discrete, continuous

• Alarm=TBurglary=TEarthquake=F
alarm  burglary  ¬earthquake

• P(Burglary) = 0.1
P(Alarm) = 0.1
P(earthquake) = 0.000003

• P(Alarm, Burglary) =

alarm ¬alarm

burglary .09 .01

¬burglary .1 .8 6



Probability theory 101

• Conditional probability: prob. 
of effect given causes

• Computing conditional probs:

– P(a | b) = P(a  b) / P(b)

– P(b): normalizing constant

• Product rule:

– P(a  b) = P(a | b) * P(b)

• Marginalizing:
– P(B) = ΣaP(B, a)

– P(B) = ΣaP(B | a) P(a) 
(conditioning)

• P(burglary | alarm) = .47
P(alarm | burglary) = .9

• P(burglary | alarm) =
P(burglary  alarm) / P(alarm)
= .09/.19 = .47

• P(burglary  alarm) = 
P(burglary | alarm) * P(alarm)
=  .47 * .19 = .09

• P(alarm) =
P(alarm  burglary) +
P(alarm  ¬burglary)
= .09+.1 = .19

alarm ¬alarm

burglary .09 .01

¬burglary .1 .8
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Example: Inference from the joint

alarm ¬alarm

earthquake ¬earthquake earthquake ¬earthquake

burglary .01 .08 .001 .009

¬burglary .01 .09 .01 .79

P(burglary | alarm) = α P(burglary, alarm)
= α [P(burglary, alarm, earthquake) + P(burglary, alarm, ¬earthquake)
= α [ (.01, .01) + (.08, .09) ]
= α [ (.09, .1) ]

Since P(burglary | alarm) + P(¬burglary | alarm) = 1, α = 1/(.09+.1) = 5.26
(i.e., P(alarm) = 1/α = .19 – quizlet: how can you verify this?)

P(burglary | alarm)    = .09 * 5.26  = .474

P(¬burglary | alarm)  = .1 * 5.26    = .526
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Consider

• A student has to take an exam

• She might be smart

• She might have studied

• She may be prepared for the exam

• How are these related?
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Exercise:
Inference from the joint

Queries:
– What is the prior probability of smart?
– What is the prior probability of study?
– What is the conditional probability of prepared, given 

study and smart?

p(smart    
study  prep)

smart smart

study study study study

prepared .432 .16 .084 .008

prepared .048 .16 .036 .072
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Exercise:
Inference from the joint

Queries:
– What is the prior probability of smart?
– What is the prior probability of study?
– What is the conditional probability of prepared, given study

and smart?
p(smart) = .432 + .16 + .048 + .16  = 0.8

p(smart    
study  prep)

smart smart

study study study study

prepared .432 .16 .084 .008

prepared .048 .16 .036 .072
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Exercise:
Inference from the joint

Queries:
– What is the prior probability of smart?
– What is the prior probability of study?
– What is the conditional probability of prepared, given 

study and smart?

p(smart    
study  prep)

smart smart

study study study study

prepared .432 .16 .084 .008

prepared .048 .16 .036 .072
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Exercise:
Inference from the joint

Queries:
– What is the prior probability of smart?

– What is the prior probability of study?

– What is the conditional probability of prepared, given 
study and smart?

p(study) = .432 + .048 + .084 + .036 = 0.6

p(smart    
study  prep)

smart smart

study study study study

prepared .432 .16 .084 .008

prepared .048 .16 .036 .072
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Exercise:
Inference from the joint

Queries:
– What is the prior probability of smart?
– What is the prior probability of study?
– What is the conditional probability of prepared, given 

study and smart?

p(smart    
study  prep)

smart smart

study study study study

prepared .432 .16 .084 .008

prepared .048 .16 .036 .072

14



Exercise:
Inference from the joint

Queries:
– What is the prior probability of smart?
– What is the prior probability of study?
– What is the conditional probability of prepared, given study and smart?
p(prepared|smart,study)= p(prepared,smart,study)/p(smart, study)
= .432 / (.432 + .048) 
= 0.9

p(smart    
study  prep)

smart smart

study study study study

prepared .432 .16 .084 .008

prepared .048 .16 .036 .072
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Independence

• When variables don’t affect each others’ probabil-
ities, they are independent; we can easily compute 
their joint & conditional probability:
Independent(A, B)  →  P(AB) = P(A) * P(B) or P(A|B) = P(A)

• {moonPhase, lightLevel} might be independent of 
{burglary, alarm, earthquake}

– Maybe not: burglars may be more active during a new 
moon because darkness hides their activity

– But if we know light level, moon phase doesn’t affect 
whether we are burglarized

– If burglarized, light level doesn’t affect if alarm goes off

• Need a more complex notion of independence and 
methods for reasoning about the relationships
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Exercise: Independence

Queries:

– Q1: Is smart independent of study?

– Q2: Is prepared independent of study?

How can we tell? 

p(smart    
study  prep)

smart smart

study study study study

prepared .432 .16 .084 .008

prepared .048 .16 .036 .072
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Exercise: Independence

Q1: Is smart independent of study?

• You might have some intuitive beliefs based on 
your experience

• You can also check the data

Which way to answer this is better?

p(smart    
study  prep)

smart smart

study study study study

prepared .432 .16 .084 .008

prepared .048 .16 .036 .072
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Exercise: Independence

Q1: Is smart independent of study?

Q1 true iff p(smart|study) == p(smart)

p(smart|study) = p(smart,study)/p(study) 
= (.432 + .048) / .6   =  0.8

0.8 == 0.8, so smart is independent of study

p(smart 
study  prep)

smart smart

study study study study

prepared .432 .16 .084 .008

prepared .048 .16 .036 .072
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Exercise: Independence

Q2: Is prepared independent of study?

• What is prepared?

• Q2 true iff

p(smart    
study  prep)

smart smart

study study study study

prepared .432 .16 .084 .008

prepared .048 .16 .036 .072

20



Exercise: Independence

Q2: Is prepared independent of study?

Q2 true iff p(prepared|study) == p(prepared)
p(prepared|study) = p(prepared,study)/p(study)

= (.432 + .084) / .6 = .86
0.86 ≠ 0.8, so prepared not independent of study

p(smart    
study  prep)

smart smart

study study study study

prepared .432 .16 .084 .008

prepared .048 .16 .036 .072

21



Bayes’ rule

Derived from the product rule:

– P(A, B) = P(A|B) * P(B)  # from definition of conditional probability

– P(B, A) = P(B|A) * P(A) # from definition of conditional probability

– P(A, B) = P(B, A)            # since order is not important

So…

P(A|B) = P(B|A) * P(A)

P(B)
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Useful for diagnosis!

• C is a cause, E is an effect:

– P(C|E) = P(E|C) * P(C) / P(E)

• Useful for diagnosis: 

–E are (observed) effects and C are (hidden) causes, 

–Often have model for how causes lead to effects P(E|C)

–May also have info (based on experience) on frequency 
of causes (P(C))

–Which allows us to reason abductively from effects to 
causes (P(C|E))
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Ex: meningitis and stiff neck

• Meningitis (M) can cause stiff neck (S), though 
there are other causes too

• Use S as a diagnostic symptom and estimate 
p(M|S)

• Studies can estimate p(M), p(S) & p(S|M), e.g.      
p(M)=0.7, p(S)=0.01, p(M)=0.00002

• Harder to directly gather data on p(M|S)

• Applying Bayes’ Rule:
p(M|S) = p(S|M) * p(M) / p(S) = 0.0014
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Reasoning from evidence to a cause 

• In the setting of diagnostic/evidential reasoning

– Know prior probability of hypothesis

conditional probability 

– Want to compute the posterior probability

• Bayes’s theorem:

onsanifestatievidence/m                                      

hypotheses                                             

1 mj

i

EEE

 H

P(Hi |E j ) = P(Hi )*P(E j |Hi ) /P(E j )

)( iHP

)|( ij HEP

)|( ij HEP

)|( ji EHP

)( iHP
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Simple Bayesian diagnostic reasoning

• Naive Bayes classifier

• Knowledge base:

– Evidence / manifestations: E1, … Em

– Hypotheses / disorders: H1, … Hn

Note: Ej and Hi are binary; hypotheses are mutually 
exclusive (non-overlapping) and exhaustive (cover all 
possible cases)

– Conditional probabilities: P(Ej | Hi), i = 1, … n; j = 1, … m

• Cases (evidence for a particular instance): E1, …, El

• Goal: Find the hypothesis Hi with highest posterior

– Maxi P(Hi | E1, …, El)

28
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Simple Bayesian diagnostic reasoning

• Bayes’ rule:

P(Hi | E1… Em) = P(E1…Em | Hi) P(Hi) / P(E1… Em)

• Assume each evidence Ei is conditionally indepen-

dent of the others, given a hypothesis Hi, then:

P(E1…Em | Hi) = m
j=1 P(Ej | Hi)

• If only care about relative probabilities for Hi, then:

P(Hi | E1…Em) = α P(Hi) 
m

j=1 P(Ej | Hi)
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Naïve Bayes

• Use Bayesian modeling

• Make the simplest possible 
independence assumption:

– Each attribute is independent of the 
values of the other attributes, given the 
class variable

– In our restaurant domain:  Cuisine is 
independent of Patrons, given a decision 
to stay (or not)
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Bayesian Formulation

• p(C | F1, ..., Fn) = p(C) p(F1, ..., Fn | C) / P(F1, ..., Fn)
= α p(C) p(F1, ..., Fn | C) 

• Assume each feature Fi is conditionally independent 
of  others given the class C.  Then:
p(C | F1, ..., Fn)  = α p(C) Πi p(Fi | C) 

• Estimate each of these conditional probabilities 
from the observed counts in the training data:
p(Fi | C)  = N(Fi∧ C) / N(C)
– One subtlety of using the algorithm in practice: when your 

estimated probabilities are zero, ugly things happen

– Fix: Add one to every count (aka Laplace smoothing—they have a 
different name for everything!)

31
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Naive Bayes: Example

p(Wait | Cuisine, Patrons, Rainy?)  = 

= α  p(Wait)  p(Cuisine|Wait)  p(Patrons|Wait)  p(Rainy?|Wait)

= p(Wait)  p(Cuisine|Wait)  p(Patrons|Wait)  p(Rainy?|Wait)

p(Cuisine)  p(Patrons)  p(Rainy?)

We can estimate all of the parameters (p(F) and p(C) just 
by counting from the training examples
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Naive Bayes: Analysis

• Naive Bayes is amazingly easy to implement
(once you understand the math behind it)

• Naive Bayes can outperform many much more 
complex algorithms—it’s a baseline that 
should be tried or used for comparison

• Naive Bayes can’t capture interdependencies 
between variables (obviously)—for that, we 
need Bayes nets!
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Bag of Words Classifier

γ( )=c

seen 2

sweet 1

whimsical 1

recommend 1

happy 1

... ...classifier

classifier



Naïve Bayes (NB) Classifier

Start with Bayes Rule

label text

argmax𝑌𝑝 𝑋 𝑌) ∗ 𝑝(𝑌)



Naïve Bayes (NB) Classifier

argmax𝑌ෑ

𝑡

𝑝(𝑋𝑡|𝑌) ∗ 𝑝(𝑌)

Adopt naïve bag of words representation Xt

Assume position doesn’t matter

label each word

Iterate through 
possible vocab 

words



Learning for a Naïve Bayes Classifier

Assuming V vocab types 𝑤1, … , 𝑤𝑉 and L classes 
𝑢1, … , 𝑢𝐿(and appropriate corpora)
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Q: What parameters 
(values/weights) must 

be learned?
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Learning for a Naïve Bayes Classifier

Assuming V vocab types 𝑤1, … , 𝑤𝑉 and L classes 
𝑢1, … , 𝑢𝐿(and appropriate corpora)

Q: What parameters 
(values/weights) must 

be learned?
A: 𝑝 𝑤𝑣 𝑢𝑙 , 𝑝(𝑢𝑙)

Q: How many 
parameters must be 

learned?
A: 𝐿𝐾 + 𝐿

Q: What distributions 
need to sum to 1?

A: Each 𝑝 ⋅ 𝑢𝑙 , and 
the prior



Multinomial Naïve Bayes: Learning

Calculate P(cj) terms

For each cj in C do
docsj = all docs with  class =cj

Calculate P(wk | cj) terms
Textj = single doc containing all docsj

For each word wk in Vocabulary
nk = # of occurrences of wk in Textj

From training corpus, extract Vocabulary

𝑝 𝑐𝑗 =
|𝑑𝑜𝑐𝑠𝑗|

# 𝑑𝑜𝑐𝑠
𝑝 𝑤𝑘| 𝑐𝑗 = class unigram LM

∝ count(word 𝑤𝑘in doc
labeled with 𝑐𝑗)



Naive Bayes: Analysis

• Naive Bayes is amazingly easy to implement 
(once you understand the math behind it)

• Naive Bayes can outperform many much more 
complex algorithms—it’s a baseline that 
should be tried or used for comparison

• Naive Bayes can’t capture interdependencies 
between variables (obviously)—for that, we 
need Bayes nets!

45



Brill and Banko (2001)

With enough data, the classifier may not matter



Naive Bayes: Analysis

• Naive Bayes is amazingly easy to implement 
(once you understand the math behind it)

• Naive Bayes can outperform many much more 
complex algorithms—it’s a baseline that 
should be tried or used for comparison

• Naive Bayes can’t capture interdependencies
between variables (obviously)—for that, we 
need Bayes nets!
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Limitations
• Can’t easily handle multi-fault situations or

cases where intermediate (hidden) causes exist:
– Disease D causes syndrome S, which causes 

correlated manifestations M1 and M2

• Consider composite hypothesis H1H2, where H1 & 
H2 independent. What’s relative posterior?

P(H1  H2 | E1, …, El) = α P(E1, …, El | H1  H2) P(H1 
H2)

= α P(E1, …, El | H1  H2) P(H1) P(H2)
= α l

j=1 P(Ej | H1  H2) P(H1) P(H2)

• How do we compute P(Ej | H1H2) ?
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Summary
• Probability a rigorous formalism for uncertain 

knowledge
• Joint probability distribution specifies probability 

of every atomic event
• Answer queries by summing over atomic events
• Must reduce joint size for non-trivial domains

• Bayes rule: compute from known conditional 
probabilities, usually in causal direction

• Independence & conditional independence
provide tools

• Next: Bayesian belief networks
50



Overview 

• Bayesian Belief Networks (BBNs) can reason 
with networks of propositions and associated 
probabilities

• Useful for many AI problems

– Diagnosis

– Expert systems

– Planning

– Learning
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Probabilistic Graphical Models

A graph G that represents a probability 
distribution over random variables 𝑋1, … , 𝑋𝑁
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Probabilistic Graphical Models

A graph G that represents a probability 
distribution over random variables 𝑋1, … , 𝑋𝑁

Graph G = (vertices V, edges E)

Distribution 𝑝(𝑋1, … , 𝑋𝑁)
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Probabilistic Graphical Models

A graph G that represents a probability distribution 
over random variables 𝑋1, … , 𝑋𝑁

Graph G = (vertices V, edges E)

Distribution 𝑝(𝑋1, … , 𝑋𝑁)

Vertices ↔ random variables

Edges show dependencies among random variables
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Probabilistic Graphical Models

A graph G that represents a probability distribution 
over random variables 𝑋1, … , 𝑋𝑁

Graph G = (vertices V, edges E)
Distribution 𝑝(𝑋1, … , 𝑋𝑁)

Vertices ↔ random variables
Edges show dependencies among random variables

Two main flavors: directed graphical models and 
undirected graphical models (come talk to me)
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Directed Graphical Models

A directed (acyclic) graph G=(V,E) that represents 
a probability distribution over random variables 

𝑋1, … , 𝑋𝑁

Joint probability factorizes into factors of 𝑋𝑖
conditioned on the parents of 𝑋𝑖
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Directed Graphical Models

A directed (acyclic) graph G=(V,E) that represents 
a probability distribution over random variables 

𝑋1, … , 𝑋𝑁

Joint probability factorizes into factors of 𝑋𝑖
conditioned on the parents of 𝑋𝑖

Benefit: the independence 
properties are transparent
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Directed Graphical Models

A directed (acyclic) graph G=(V,E) that represents 
a probability distribution over random variables 

𝑋1, … , 𝑋𝑁

Joint probability factorizes into factors of 𝑋𝑖
conditioned on the parents of 𝑋𝑖

A graph/joint distribution that follows this is a 

Bayesian network
58



BBN Definition
• AKA Bayesian Network, Bayes Net

• A graphical model (as a DAG) of probabilistic 
relationships among a set of random variables

• Nodes are variables, links represent direct 
influence of one variable on another

• Nodes have associated prior probabilities or 
Conditional Proability
Tables (CPTs)

source59
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Why? Three (Four) kinds of reasoning

BBNs support three main kinds of reasoning:

• Predicting conditions given predispositions

• Diagnosing conditions given symptoms (and 
predisposing)

• Explaining a condition by one or more 
predispositions

To which we can add a fourth:

• Deciding on an action based on probabilities 
of the conditions

60



Recall Bayes Rule

)()|()()|(),( HPHEPEPEHPEHP ==

)(

)()|(
)|(

EP

HPHEP
EHP =

Note symmetry: can compute probability of 

a hypothesis given its evidence as well as 

probability of evidence given hypothesis
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Simple Bayesian Network

CancerSmoking heavylightnoS ,,

 malignantbenignnoneC ,,
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Simple Bayesian Network

CancerSmoking heavylightnoS ,,

 malignantbenignnoneC ,,

Nodes

represent

variables

Links represent

“causal” relations
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Simple Bayesian Network

CancerSmoking heavylightnoS ,,

 malignantbenignnoneC ,,

P( S=no) 0.80
P( S=light) 0.15
P( S=heavy) 0.05

Smoking= no light heavy
C=none 0.96 0.88 0.60
C=benign 0.03 0.08 0.25
C=malignant 0.01 0.04 0.15

Prior probability of S

Conditional distribution of S and C

Nodes with no in-links 

have prior probabilities

Nodes with in-links 

have joint probability 

distributions

64



Bayesian Networks:
Directed Acyclic Graphs

𝑥1

𝑥4𝑥3 𝑥5

𝑥2

𝑝 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑁 =ෑ

𝑖

𝑝 𝑥𝑖 𝜋(𝑥𝑖))

“parents of”

topological 
sort
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Bayesian Networks:
Directed Acyclic Graphs

𝑥1

𝑥4𝑥3 𝑥5

𝑥2

𝑝 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑁 =ෑ

𝑖

𝑝 𝑥𝑖 𝜋(𝑥𝑖))

𝑝 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5 = ???
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Bayesian Networks:
Directed Acyclic Graphs

𝑥1

𝑥4𝑥3 𝑥5

𝑥2

𝑝 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5 =
𝑝 𝑥1 𝑝 𝑥3 𝑝 𝑥2 𝑥1, 𝑥3 𝑝 𝑥4 𝑥2, 𝑥3 𝑝(𝑥5|𝑥2, 𝑥4)
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Bayesian Networks:
Directed Acyclic Graphs

𝑥1

𝑥4𝑥3 𝑥5

𝑥2

𝑝 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑁 =ෑ

𝑖

𝑝 𝑥𝑖 𝜋(𝑥𝑖))

exact inference in general DAGs is NP-hard

inference in trees can be exact
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More Complex Bayesian Network

Smoking

GenderAge

Cancer

Lung
Tumor

Serum
Calcium

Exposure
to Toxics
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More Complex Bayesian Network

Smoking

GenderAge

Cancer

Lung
Tumor

Serum
Calcium

Exposure
to Toxics

Links represent

“causal” relations

Nodes

represent

variables

• Does gender 

cause smoking?

• Influence might 

be a better term
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More Complex Bayesian Network

Smoking

GenderAge

Cancer

Lung
Tumor

Serum
Calcium

Exposure
to Toxics

condition
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More Complex Bayesian Network

Smoking

GenderAge

Cancer

Lung
Tumor

Serum
Calcium

Exposure
to Toxics

predispositions
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More Complex Bayesian Network

Smoking

GenderAge

Cancer

Lung
Tumor

Serum
Calcium

Exposure
to Toxics

observable symptoms
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More Complex Bayesian Network

Smoking

GenderAge

Cancer

Lung
Tumor

Serum
Calcium

Exposure
to Toxics

• Model has 7 

variables

• Complete joint 

probability 

distribution will 

have 7 

dimensions!

• Too much data 

required 

• BBN simplifies: a 

node has a CPT 

with data on 

itself & parents in 

graph

Can we predict 

likelihood of lung 

tumor given 

values of other 6 

variables?
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Independence & Conditional 
Independence in BBNs

Read these independence relationships right 
from the graph!

There are two common concepts that can help:

1. Markov blanket

2. D-separation (not covering)
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Markov Blanket

xi

Markov blanket of a node x 
is its parents, children, and 

children's parents

The Markov Blanket of a node xi

the set of nodes needed to form 
the complete conditional for a 

variable xi

(in this example, shading does not show 
observed/latent)
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Markov Blanket

xi

Markov blanket of a node x 
is its parents, children, and 

children's parents

The Markov Blanket of a node xi

the set of nodes needed to form 
the complete conditional for a 

variable xi

(in this example, shading does not show 
observed/latent)
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p(        |                                       )

=

p(        |                                       )

Given its Markov blanket, 
a node is conditionally 
independent of all other 
nodes in the BN



Independence

Age and Gender are 
independent.

P(A |G) = P(A)    
P(G |A) = P(G)    

GenderAge

P(A,G) = P(G|A) P(A) = P(G)P(A)
P(A,G) = P(A|G) P(G) = P(A)P(G)

P(A,G) = P(G) * P(A)

There is no path 

between them in 

the graph
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Conditional Independence

Smoking

GenderAge

Cancer

Cancer is independent 
of Age and Gender
given Smoking

P(C | A,G,S) = P(C | S)

If we know value of smoking, no need 

to know values of age or gender
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Conditional Independence

Smoking

GenderAge

Cancer

Cancer is independent 
of Age and Gender
given Smoking

• Instead of one big CPT with 4 

variables, we have two smaller 

CPTs with 3 and 2 variables

• If all variables binary: 12 models 

(23 +22) rather than 16 (24)
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Conditional Independence: Naïve Bayes 

Cancer

Lung
Tumor

Serum
Calcium

Serum Calcium is indepen-
dent of Lung Tumor, given 
Cancer

P(L | SC,C) = P(L|C)
P(SC | L,C) = P(SC|C)

Serum Calcium and Lung 
Tumor are dependent

Naïve Bayes assumption: evidence (e.g., symptoms) 

independent given disease; easy to combine evidence
81

http://en.wikipedia.org/wiki/Naive_Bayes_classifier#The_naive_Bayes_probabilistic_model


Explaining Away 

Exposure to Toxics is dependent
on Smoking, given Cancer

Exposure to Toxics and 
Smoking are independent

Smoking

Cancer

Exposure
to Toxics

• Explaining away: reasoning pattern where confirma-

tion of one cause reduces need to invoke alternatives

• Essence of Occam’s Razor (prefer hypothesis with 

fewest assumptions)

• Relies on independence of causes

P(E=heavy | C=malignant) > P(E=heavy 
| C=malignant, S=heavy)

82

http://en.wikipedia.org/wiki/Occam's_razor


Conditional Independence

Smoking

GenderAge

Cancer

Lung
Tumor

Serum
Calcium

Exposure
to Toxics Cancer is independent 

of Age and Gender
given Exposure to 
Toxics and Smoking.

Descendants

Parents

Non-Descendants
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Example from the Book: 8.15

http://artint.info/2e/html/ArtInt2e.Ch8.S3.SS2.html

85

Some questions: 
1. What’s the joint factorization? That 

is, simplify the joint distribution

p(F, T, A, S, L, R)

2. Are A & S independent?
3. Are there any nodes that make A & 

S conditionally independent?
4. How many different conditional 

distributions do we need?

http://artint.info/2e/html/ArtInt2e.Ch8.S3.SS2.html


D-Separation: Testing for 
Conditional Independence

Variables X & Y are 
conditionally 

independent given Z if all 
(undirected) paths from 

(any variable in) X to 
(any variable in) Y are

d-separated by Z

d-separation

P has a chain with an observed middle node

P has a fork with an observed parent node

P includes a “v-structure” or “collider” with 
all unobserved descendants

X & Y are d-separated if for all paths P, one of 
the following is true:

X Y

X Y

X Z Y

Advanced 
topic
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D-Separation: Testing for 
Conditional Independence

Variables X & Y are conditionally independent 
given Z if all (undirected) paths from (any variable 

in) X to (any variable in) Y are d-separated by Z

d-separation

P has a chain with an observed middle node

P has a fork with an observed parent node

P includes a “v-structure” or “collider” with 
all unobserved descendants

X & Y are d-separated if for all paths P, one of 
the following is true:

X Z Y

X

Z

Y

X Z Y

observing Z blocks 
the path from X to Y

observing Z blocks 
the path from X to Y

not observing Z blocks 
the path from X to Y

Advanced 
topic
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D-Separation: Testing for 
Conditional Independence

Variables X & Y are conditionally independent 
given Z if all (undirected) paths from (any variable 

in) X to (any variable in) Y are d-separated by Z

d-separation

P has a chain with an observed middle node

P has a fork with an observed parent node

P includes a “v-structure” or “collider” with 
all unobserved descendants

X & Y are d-separated if for all paths P, one of 
the following is true:

X Z Y

X

Z

Y

X Z Y

observing Z blocks 
the path from X to Y

observing Z blocks 
the path from X to Y

not observing Z blocks 
the path from X to Y

𝑝 𝑥, 𝑦, 𝑧 = 𝑝 𝑥 𝑝 𝑦 𝑝(𝑧|𝑥, 𝑦)

𝑝 𝑥, 𝑦 =෍

𝑧

𝑝 𝑥 𝑝 𝑦 𝑝(𝑧|𝑥, 𝑦) = 𝑝 𝑥 𝑝 𝑦

Advanced 
topic
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Probabilistic Graphical Models

A graph G that represents a probability distribution over 
random variables 𝑋1, … , 𝑋𝑁

Graph G = (vertices V, edges E)
Distribution 𝑝(𝑋1, … , 𝑋𝑁)

Vertices ↔ random variables
Edges show dependencies among random variables

Two main flavors: directed graphical models and 
undirected graphical models (come talk to me)

90

Advanced 
topics



Maxent Models Make a 
Reappearance

• features 𝑓 𝑥, 𝑦 between x and y that are 
meaningful;

• weights 𝜃 (one per feature) to say how 
important each feature is; and

• a way to form probabilities from 𝑓 and 𝜃

𝑝 𝑦 𝑥) ∝ exp(𝜃𝑇𝑓(𝑥, 𝑦))

91

Advanced 
topic



Markov Random Fields:
Undirected Graphs

𝑝 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑁 =
1

𝑍
ෑ

𝐶

exp(−𝐸𝐶 𝑥𝑐 )

variables part 
of the clique C

maximal 
cliques

global 
normalization

clique: subset of nodes, 
where nodes are 

pairwise connected

maximal clique: a clique 
that cannot add a node 

and remain a clique

Energy function 
(reweighted features)

Advanced 
topic
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BBN Construction

The knowledge acquisition process for a BBN 
involves three steps

KA1: Choosing appropriate variables

KA2: Deciding on the network structure

KA3: Obtaining data for the conditional 
probability tables

93

https://en.wikipedia.org/wiki/Knowledge_acquisition


• They should be values, not probabilities

KA1: Choosing variables
• Variable values: integers, reals or enumerations

• Variable should have collectively exhaustive, 
mutually exclusive values

4321 xxxx 

jixx ji  )( 

Error Occurred

No Error 

Risk of Smoking Smoking 
94



Heuristic: Knowable in Principle

Example of good variables

– Weather:  {Sunny, Cloudy, Rain, Snow}

– Gasoline: Cents per gallon {0,1,2…}

– Temperature: {  100°F , < 100°F}

– User needs help on Excel Charts: {Yes, No}

– User’s personality: {dominant, submissive}
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KA2: Structuring

Lung
Tumor

Smoking
Exposure
to Toxic

GenderAge
Network structure corresponding
to “causality” is usually good.

Cancer
Genetic
Damage

Initially this uses the designer’s
knowledge but can be checked 
with data
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KA3: The Numbers

 heavylightnoS ,,

 malignantbenignnoneC ,,
CancerSmoking

smoking priors

no 0.80

light 0.15

heavy 0.05

smoking

cancer no light heavy

none 0.96 0.88 0.60

benign 0.03 0.08 0.25

malignant 0.01 0.04 0.15

• For each variable we have a table of probability 

of its value for values of its parents

• For variables w/o parents, we have prior 

probabilities
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Three (Four) kinds of reasoning

BBNs support three main kinds of reasoning:

• Predicting conditions given predispositions

• Diagnosing conditions given symptoms (and 
predisposing)

• Explaining a condition by one or more 
predispositions

To which we can add a fourth:

• Deciding on an action based on probabilities 
of the conditions

98



Fundamental Inference & Learning 
Question

• Compute posterior probability of a node given 
some other nodes

𝑝(𝑄|𝑥1, … , 𝑥𝑗)
• Some techniques

– MLE (maximum likelihood estimation)/MAP 
(maximum a posteriori) [covered 2nd]

– Variable Elimination [covered 1st]
– (Loopy) Belief Propagation ((Loopy) BP)
– Monte Carlo
– Variational methods
– …

99

Advanced 
topics



Predictive Inference

How likely are elderly males
to get malignant cancer?

P(C=malignant | Age>60, Gender=male)

Smoking

GenderAge

Cancer

Lung
Tumor

Serum
Calcium

Exposure
to Toxics

100



Predictive and diagnostic combined

How likely is an elderly 
male patient with high 
Serum Calcium to have 
malignant cancer?

P(C=malignant | Age>60, 
Gender= male, Serum Calcium  = high)

Smoking

GenderAge

Cancer

Lung
Tumor

Serum
Calcium

Exposure
to Toxics
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Explaining away

Smoking

GenderAge

Cancer

Lung
Tumor

Serum
Calcium

Exposure
to Toxics

• If we see a lung tumor, 
the probability of heavy 
smoking and of exposure 
to toxics both go up

• If we then observe heavy 
smoking, the probability of 
exposure to toxics goes 
back down

Smoking

102



Decision making

• A decision is a medical domain might be a 
choice of treatment (e.g., radiation or 
chemotherapy)

• Decisions should be made to maximize 
expected utility

• View decision making in terms of

– Beliefs/Uncertainties

– Alternatives/Decisions

– Objectives/Utilities
103



Decision Problem
Should I have my party
inside or outside?

in

out

Regret

Relieved

Perfect!

Disaster 

dry

wet

dry

wet
104



Decision Making with BBNs

• Today’s weather forecast might be either 
sunny, cloudy or rainy

• Should you take an umbrella when you leave?

• Your decision depends only on the forecast

– The forecast “depends on” the actual weather

• Your satisfaction depends on your decision 
and the weather

– Assign a utility to each of four situations: (rain|no
rain) x (umbrella, no umbrella)
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Decision Making with BBNs

• Extend BBN framework to include two new 
kinds of nodes: decision and utility

• Decision node computes the expected utility 
of a decision given its parent(s) (e.g., forecast) 
and a valuation

• Utility node computes utility value given its 
parents, e.g. a decision and weather
• Assign utility to each situations: (rain|no rain) x 

(umbrella, no umbrella)

• Utility value assigned to each is probably subjective
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Fundamental Inference & Learning 
Question

• Compute posterior probability of a node given 
some other nodes

𝑝(𝑄|𝑥1, … , 𝑥𝑗)
• Some techniques

– MLE (maximum likelihood estimation)/MAP 
(maximum a posteriori) [covered 2nd]

– Variable Elimination [covered 1st]
– (Loopy) Belief Propagation ((Loopy) BP)
– Monte Carlo
– Variational methods
– …

108

Advanced 
topics



Variable Elimination

• Inference: Compute posterior probability of a 
node given some other nodes

𝑝(𝑄|𝑥1, … , 𝑥𝑗)

• Variable elimination: An algorithm for exact 
inference

– Uses dynamic programming

– Not necessarily polynomial time!

109



Variable Elimination (High-level)

Goal: 𝑝(𝑄|𝑥1, … , 𝑥𝑗)

(The word “factor” is used for each CPT.)

1.Pick one of the non-conditioned, MB variables

2.Eliminate this variable by marginalizing 
(summing) it out from all factors (CPTs) that 
contain it

3.Go back to 1 until no (MB) variables remain

4.Multiply the remaining factors and normalize.
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Variable Elimination: Example

(The word “factor” is used 
for each CPT.)
1. Pick one of the non-

conditioned, MB 
variables

2. Eliminate this variable 
by marginalizing 
(summing) it out from 
all factors (CPTs) that 
contain it

3. Go back to 1 until no 
(MB) variables remain

4. Multiply the remaining 
factors and normalize.

111

Goal: P(Tampering ∣ Smoke=true ∧ Report=true)



Variable Elimination: Example

(The word “factor” is used 
for each CPT.)
1. Pick one of the non-

conditioned, MB 
variables 

2. Eliminate this variable 
by marginalizing 
(summing) it out from 
all factors (CPTs) that 
contain it

3. Go back to 1 until no 
(MB) variables remain

4. Multiply the remaining 
factors and normalize.
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Goal: P(Tampering ∣ Smoke=true ∧ Report=true)



Variable Elimination: Example

(The word “factor” is used 
for each CPT.)
1. Pick one of the non-

conditioned, MB 
variables

2. Eliminate this variable 
by marginalizing 
(summing) it out from 
all factors (CPTs) that 
contain it

3. Go back to 1 until no 
(MB) variables remain

4. Multiply the remaining 
factors and normalize.

113

Goal: P(Tampering ∣ Smoke=true ∧ Report=true)

Task: Eliminate Fire



Variable Elimination: Example

(The word “factor” is used 
for each CPT.)
1. Pick one of the non-

conditioned, MB 
variables 

2. Eliminate this variable 
by marginalizing 
(summing) it out from 
all factors (CPTs) that 
contain it

3. Go back to 1 until no 
(MB) variables remain

4. Multiply the remaining 
factors and normalize.
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Goal: P(Tampering ∣ Smoke=true ∧ Report=true)

f1(Fire)
f2(Tampering, Fire, Alarm)
f3(Fire)

f6(Tampering, Alarm) =

=෍

𝑢

𝑓1 Fire = 𝑢 𝑓2 𝑇, 𝐹 = 𝑢, 𝐴 𝑓3(𝐹 = 𝑢)

=෍

𝑢

𝑝 Fire = 𝑢 𝑝 𝐴 | 𝑇, 𝐹 = 𝑢 𝑝 𝑆 = 𝑦 𝐹 = 𝑢)



Variable Elimination: Example

(The word “factor” is used 
for each CPT.)
1. Pick one of the non-

conditioned, MB 
variables 

2. Eliminate this variable 
by marginalizing 
(summing) it out from 
all factors (CPTs) that 
contain it

3. Go back to 1 until no 
(MB) variables remain

4. Multiply the remaining 
factors and normalize.
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Goal: P(Tampering ∣ Smoke=true ∧ Report=true)

f6(Tampering, Alarm) =

=෍

𝑢

𝑝 Fire = 𝑢 𝑝 𝐴 | 𝑇, 𝐹 = 𝑢 𝑝 𝑆 = 𝑦 𝐹 = 𝑢)

= 𝑝 Fire = 𝑦 𝑝 𝐴 | 𝑇, 𝐹 = 𝑦 𝑝 𝑆 = 𝑦 𝐹 = 𝑦) +
𝑝 Fire = 𝑛 𝑝 𝐴 | 𝑇, 𝐹 = 𝑛 𝑝 𝑆 = 𝑦 𝐹 = 𝑛)



Variable Elimination: Example

(The word “factor” is used 
for each CPT.)
1. Pick one of the non-

conditioned, MB 
variables 

2. Eliminate this variable 
by marginalizing 
(summing) it out from 
all factors (CPTs) that 
contain it

3. Go back to 1 until no 
(MB) variables remain

4. Multiply the remaining 
factors and normalize.
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Goal: P(Tampering ∣ Smoke=true ∧ Report=true)

f6(Tampering, Alarm) =

=෍

𝑢

𝑝 Fire = 𝑢 𝑝 𝐴 | 𝑇, 𝐹 = 𝑢 𝑝 𝑆 = 𝑦 𝐹 = 𝑢)

Tamp. Alarm f6

Yes Yes 𝑝 Fire = 𝑦 𝑝 𝐴 = 𝑦 | 𝑇 = 𝑦 , 𝐹 = 𝑦 𝑝 𝑆 = 𝑦 𝐹 = 𝑦) +
𝑝 Fire = 𝑛 𝑝 𝐴 = 𝑦| 𝑇 = 𝑦, 𝐹 = 𝑛 𝑝 𝑆 = 𝑦 𝐹 = 𝑛)

Yes No …

No No …

No Yes …



Variable Elimination: Example

(The word “factor” is used 
for each CPT.)
1. Pick one of the non-

conditioned, MB 
variables

2. Eliminate this variable 
by marginalizing 
(summing) it out from 
all factors (CPTs) that 
contain it

3. Go back to 1 until no 
(MB) variables remain

4. Multiply the remaining 
factors and normalize.
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Goal: P(Tampering ∣ Smoke=true ∧ Report=true)

Task: Eliminate Alarm



Variable Elimination: Example

(The word “factor” is used 
for each CPT.)
1. Pick one of the non-

conditioned, MB 
variables

2. Eliminate this variable 
by marginalizing 
(summing) it out from 
all factors (CPTs) that 
contain it

3. Go back to 1 until no 
(MB) variables remain

4. Multiply the remaining 
factors and normalize.
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Goal: P(Tampering ∣ Smoke=true ∧ Report=true)

…other computations not 
shown---see the book…



Variable Elimination: Example

(The word “factor” is used 
for each CPT.)
1. Pick one of the non-

conditioned, MB 
variables 

2. Eliminate this variable 
by marginalizing 
(summing) it out from 
all factors (CPTs) that 
contain it

3. Go back to 1 until no 
(MB) variables remain

4. Multiply the remaining 
factors and normalize.
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Goal: P(Tampering ∣ Smoke=true ∧ Report=true)

Task: Normalize in order 
to compute p(Tampering)

We’ll have a single factor f9(Tampering):

𝑝 𝑇 = 𝑢 =
𝑓9(𝑇 = 𝑢)

σ𝑣 𝑓9(𝑇 = 𝑣)



Variable Elimination: Example

(The word “factor” is used 
for each CPT.)
1. Pick one of the non-

conditioned, MB 
variables 

2. Eliminate this variable 
by marginalizing 
(summing) it out from 
all factors (CPTs) that 
contain it

3. Go back to 1 until no 
(MB) variables remain

4. Multiply the remaining 
factors and normalize.
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Goal: P(Tampering ∣ Smoke=true ∧ Report=true)

Task: Normalize in order 
to compute p(Tampering)

We’ll have a single factor f9(Tampering):

𝑝 𝑇 = 𝑦 =
𝑓9(𝑇 = 𝑦)

𝑓9 𝑇 = 𝑦 + 𝑓9(𝑇 = 𝑛)



Learning Bayesian networks 

• Given training set

• Find graph that best matches D

– model selection 

– parameter estimation
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Learning Bayesian Networks
• Describe a BN by specifying its (1) structure and (2) 

conditional probability tables (CPTs)
• Both can be learned from data, but

–learning structure much harder than learning parameters
–learning when some nodes are hidden, or with missing data 
harder still

• Four cases:
Structure Observability Method
Known Full             Maximum Likelihood Estimation
Known Partial          EM (or gradient ascent)
Unknown Full             Search through model space 
Unknown Partial          EM + search through model 
space 
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Variations on a theme

• Known structure, fully observable: only need to 
do parameter estimation

• Unknown structure, fully observable: do heuristic 
search through structure space, then parameter 
estimation

• Known structure, missing values: use expectation 
maximization (EM) to estimate parameters

• Known structure, hidden variables: apply adaptive 
probabilistic network (APN) techniques

• Unknown structure, hidden variables: too hard to 
solve!
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Fundamental Inference Question

• Compute posterior probability of a node given 
some other nodes

𝑝(𝑄|𝑥1, … , 𝑥𝑗)
• Some techniques

– MLE (maximum likelihood estimation)/MAP 
(maximum a posteriori) [covered 2nd]

– Variable Elimination [covered 1st]
– (Loopy) Belief Propagation ((Loopy) BP)
– Monte Carlo
– Variational methods
– …

124
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Parameter estimation
• Assume known structure
• Goal: estimate BN parameters q

– entries in local probability models, P(X | Parents(X))

• A parameterization q is good if it is likely to 
generate the observed data:

• Maximum Likelihood Estimation (MLE) Principle: 
Choose q* so as to maximize L

==
m

mxPDPDL )|][()|():( qqq

i.i.d. samples
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Parameter estimation II
• The likelihood decomposes according to the structure 

of the network
→ we get a separate estimation task for each parameter

• The MLE (maximum likelihood estimate) solution for 
discrete data & RV values:
– for each value x of a node X
– and each instantiation u of Parents(X)

– Just need to collect the counts for every combination of 
parents and children observed in the data

– MLE is equivalent to an assumption of a uniform prior over 
parameter values

)(

),(*

|
uN

uxN
ux =q sufficient statistics
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Learning:
Maximum Likelihood Estimation (MLE)

Core concept in intro statistics:

• Observe some data 𝒳

• Compute some distribution 𝑔(𝒳) to {predict, 
explain, generate} 𝒳

• Assume 𝑔 is controlled by parameters 𝜙, i.e., 
𝑔𝜙(𝒳)

– Sometimes written 𝑔(𝒳;𝜙)

• Learning appropriate value(s) of 𝜙 allows you to 
GENERALIZE about 𝒳



Learning:
Maximum Likelihood Estimation (MLE)

Central to machine learning:

• Observe some data (𝒳,𝒴)

• Compute some function 𝑓(𝒳) to {predict, explain, 
generate} 𝒴

• Assume 𝑓 is controlled by parameters 𝜃, i.e., 𝑓𝜃(𝒳)

– Sometimes written 𝑓(𝒳; 𝜃)



Learning Parameters for the Die Model

𝑝 𝑤1, 𝑤2, … , 𝑤𝑁 = 𝑝 𝑤1 𝑝 𝑤2 ⋯𝑝 𝑤𝑁 =ෑ

𝑖

𝑝 𝑤𝑖

maximize (log-) likelihood to learn the probability parameters

Q: Why is maximizing log-
likelihood a reasonable 

thing to do?



Learning Parameters for the Die Model

𝑝 𝑤1, 𝑤2, … , 𝑤𝑁 = 𝑝 𝑤1 𝑝 𝑤2 ⋯𝑝 𝑤𝑁 =ෑ

𝑖

𝑝 𝑤𝑖

maximize (log-) likelihood to learn the probability parameters

Q: Why is maximizing log-
likelihood a reasonable 

thing to do?

A: Develop a good model 
for what we observe



Learning Parameters for the Die Model: 
Maximum Likelihood (Intuition)

𝑝 𝑤1, 𝑤2, … , 𝑤𝑁 = 𝑝 𝑤1 𝑝 𝑤2 ⋯𝑝 𝑤𝑁 =ෑ

𝑖

𝑝 𝑤𝑖

maximize (log-) likelihood to learn the probability parameters

p(1) = ?

p(3) = ?

p(5) = ?

p(2) = ?

p(4) = ?

p(6) = ?

If you observe 
these 9 rolls…

…what are “reasonable” 
estimates for p(w)?



Learning Parameters for the Die Model: 
Maximum Likelihood (Intuition)

p(1) = 2/9

p(3) = 1/9

p(5) = 1/9

p(2) = 1/9

p(4) = 3/9

p(6) = 1/9

maximum 
likelihood 
estimates

𝑝 𝑤1, 𝑤2, … , 𝑤𝑁 = 𝑝 𝑤1 𝑝 𝑤2 ⋯𝑝 𝑤𝑁 =ෑ

𝑖

𝑝 𝑤𝑖

maximize (log-) likelihood to learn the probability parameters

If you observe 
these 9 rolls…

…what are “reasonable” 
estimates for p(w)?



Learning:
Maximum Likelihood Estimation (MLE)
Core concept in intro statistics:
• Observe some data 𝒳
• Compute some distribution 
𝑔(𝒳) to {predict, explain, 
generate} 𝒳

• Assume 𝑔 is controlled by 
parameters 𝜙, i.e., 𝑔𝜙(𝒳)
– Sometimes written 𝑔(𝒳;𝜙)

• Learning appropriate 
value(s) of 𝜙 allows you to 
GENERALIZE about 𝒳

How do we “learn 
appropriate value(s) 

of 𝜙?”
Many different options: a 
common one is maximum 
likelihood estimation (MLE)
• Find values 𝜙 s.t.
𝑔𝜙(𝒳 = {𝑥1, … , 𝑥𝑁}) is 
maximized

• Independence assumptions 
are very useful here!

• Logarithms are also useful!



Learning:
Maximum Likelihood Estimation (MLE)
Core concept in intro statistics:

• Observe some data 𝒳

• Compute some distribution 
𝑔(𝒳) to {predict, explain, 
generate} 𝒳

• Assume 𝑔 is controlled by 
parameters 𝜙, i.e., 𝑔𝜙(𝒳)
– Sometimes written 𝑔(𝒳;𝜙)

• MLE: Find values 𝜙 s.t.
𝑔𝜙(𝒳 = {𝑥1, … , 𝑥𝑁}) is 
maximized

Example: How much does it 
snow?

• 𝒳 = 𝑥1, 𝑥2, … , 𝑥𝑁 are 
snowfall values from the 
previous N storms

• Goal: learn 𝜙 such that 𝑔
correctly models, as 
accurately as possible, the 
amount of snow likely



Learning:
Maximum Likelihood 

Estimation (MLE)
Core concept in intro statistics:

• Observe some data 𝒳

• Compute some distribution 
𝑔(𝒳) to {predict, explain, 
generate} 𝒳

• Assume 𝑔 is controlled by 
parameters 𝜙, i.e., 𝑔𝜙(𝒳)
– Sometimes written 𝑔(𝒳;𝜙)

• MLE: Find values 𝜙 s.t.
𝑔𝜙(𝒳 = {𝑥1, … , 𝑥𝑁}) is 
maximized

Example: How much does it 
snow?

• 𝒳 = 𝑥1, 𝑥2, … , 𝑥𝑁 are 
snowfall values from the 
previous N storms

• Goal: learn 𝜙 such that 𝑔
correctly models, as 
accurately as possible, the 
amount of snow likely

• Assumption: each 𝑥𝑖 is 
independent from all others

max
𝜙

෍

𝑖=1

𝑁

log 𝑔𝜙(𝑥𝑖)

Advanced 
topic



MLE Snowfall Example

Example: How much does it 
snow?
• 𝒳 = 𝑥1, 𝑥2, … , 𝑥𝑁 are 

snowfall values from the 
previous N storms

• Goal: learn 𝜙 such that 𝑔
correctly models, as 
accurately as possible, the 
amount of snow likely

• Assumption: each 𝑥𝑖 is 
independent from all 
others

max
𝜙

෍

𝑖=1

𝑁

log 𝑔𝜙(𝑥𝑖)

Q: Why is taking logarithms 
okay?

Q: What other assumptions, 
or decisions, do we need to 
make?

Advanced 
topic



MLE Snowfall Example

Example: How much does it 
snow?
• 𝒳 = 𝑥1, 𝑥2, … , 𝑥𝑁 are 

snowfall values from the 
previous N storms

• Goal: learn 𝜙 such that 𝑔
correctly models, as 
accurately as possible, the 
amount of snow likely

• Assumption: each 𝑥𝑖 is 
independent from all 
others, but all from g

max
𝜙

෍

𝑖=1

𝑁

log 𝑔𝜙(𝑥𝑖)

Q: Why is taking logarithms 
okay?

Q: What other assumptions, or 
decisions, do we need to 
make?

𝑥𝑖 is positive, real-valued. 
What’s a faithful probability 
distribution for 𝑥𝑖?
• Normal? ✘
• Gamma? ✓
• Exponential? ✓
• Bernoulli? ✘
• Poisson? ✘

Advanced 
topic



MLE Snowfall Example

Example: How much does it 
snow?
• 𝒳 = 𝑥1, 𝑥2, … , 𝑥𝑁 are 

snowfall values from the 
previous N storms

• Goal: learn 𝜙 such that 𝑔
correctly models, as 
accurately as possible, the 
amount of snow likely

• Assumption: each 𝑥𝑖 is 
independent from all 
others, but all from g

max
𝜙

෍

𝑖=1

𝑁

log 𝑔𝜙(𝑥𝑖)

Q: Why is taking logarithms 
okay?

Q: What other assumptions, or 
decisions, do we need to 
make?

𝑥𝑖 is positive, real-valued. 
What’s a faithful probability 
distribution for 𝑥𝑖?
• Normal? ✘
• Gamma? ✓
• Exponential? ✓
• Bernoulli? ✘
• Poisson? ✘

𝑝 𝑋 = 𝑥 =
𝑥𝑘−1exp(

−𝑘
𝜃 )

𝜃𝑘Γ(𝑘)

Advanced 
topic



MLE Snowfall Example

Example: How much does it 
snow?
• 𝒳 = 𝑥1, 𝑥2, … , 𝑥𝑁 are 

snowfall values from the 
previous N storms

• Goal: learn 𝜙 such that 𝑔
correctly models, as accurately 
as possible, the amount of 
snow likely

• Assumption: each 𝑥𝑖 is 
independent from all others, 
but all from g

max
𝜙

෍

𝑖=1

𝑁

log 𝑔𝜙(𝑥𝑖)

Q: Why is taking logarithms okay?

Q: What other assumptions, or 
decisions, do we need to make?

𝑥𝑖 is positive, real-valued. What’s 
a faithful/nice-to-compute-and-
good-enough probability 
distribution for 𝑥𝑖?
• Normal? ✘✓
• Gamma? ✓ ?
• Exponential? ✓ ?
• Bernoulli? ✘✘
• Poisson? ✘✘

𝑝 𝑋 = 𝑥 =
1

2𝜋𝜎
exp(

− 𝑥 − 𝜇 2

2𝜎2
)

Advanced 
topic



MLE Snowfall Example

Example: How much does 
it snow?
• 𝒳 = 𝑥1, 𝑥2, … , 𝑥𝑁 are 

snowfall values from 
the previous N storms

• Goal: learn 𝜙 such that 
𝑔 correctly models, as 
accurately as possible, 
the amount of snow 
likely

• Assumption: each 𝑥𝑖 is 
independent from all 
others, but all from g

max
𝜙

෍

𝑖=1

𝑁

log 𝑔𝜙(𝑥𝑖)

𝑥𝑖 ~Normal 𝜇, 𝜎
2

max
(𝜇,𝜎2)

෍

𝑖=1

𝑁

log Normal𝜇,𝜎2(𝑥𝑖) =

Advanced 
topic



MLE Snowfall Example

Example: How much does 
it snow?
• 𝒳 = 𝑥1, 𝑥2, … , 𝑥𝑁 are 

snowfall values from 
the previous N storms

• Goal: learn 𝜙 such that 
𝑔 correctly models, as 
accurately as possible, 
the amount of snow 
likely

• Assumption: each 𝑥𝑖 is 
independent from all 
others, but all from g

max
𝜙

෍

𝑖=1

𝑁

log 𝑔𝜙(𝑥𝑖)

𝑥𝑖 ~Normal 𝜇, 𝜎
2

max
(𝜇,𝜎2)

෍

𝑖=1

𝑁

log Normal𝜇,𝜎2(𝑥𝑖) =

max
(𝜇,𝜎2)

෍

𝑖=1

𝑁
− 𝑥𝑖 − 𝜇 2

𝜎2
−𝑁 log 𝜎 = 𝐹

Advanced 
topic



MLE Snowfall Example

Example: How much does 
it snow?
• 𝒳 = 𝑥1, 𝑥2, … , 𝑥𝑁 are 

snowfall values from 
the previous N storms

• Goal: learn 𝜙 such that 
𝑔 correctly models, as 
accurately as possible, 
the amount of snow 
likely

• Assumption: each 𝑥𝑖 is 
independent from all 
others, but all from g

max
𝜙

෍

𝑖=1

𝑁

log 𝑔𝜙(𝑥𝑖)

𝑥𝑖 ~Normal 𝜇, 𝜎
2

max
(𝜇,𝜎2)

෍

𝑖=1

𝑁

log Normal𝜇,𝜎2(𝑥𝑖) =

max
(𝜇,𝜎2)

෍

𝑖=1

𝑁
− 𝑥𝑖 − 𝜇 2

𝜎2
−𝑁 log 𝜎 = 𝐹

Q: How do we find 𝜇, 𝜎2?

Advanced 
topic



MLE Snowfall Example

Example: How much does it 
snow?
• 𝒳 = 𝑥1, 𝑥2, … , 𝑥𝑁 are 

snowfall values from the 
previous N storms

• Goal: learn 𝜙 such that 𝑔
correctly models, as 
accurately as possible, the 
amount of snow likely

• Assumption: each 𝑥𝑖 is 
independent from all 
others, but all from g

max
𝜙

෍

𝑖=1

𝑁

log𝑔𝜙(𝑥𝑖)

𝑥𝑖 ~Normal 𝜇, 𝜎
2

max
(𝜇,𝜎2)

෍

𝑖=1

𝑁

logNormal𝜇,𝜎2(𝑥𝑖) =

max
(𝜇,𝜎2)

෍

𝑖=1

𝑁
− 𝑥𝑖 − 𝜇 2

𝜎2
− 𝑁 log𝜎 = 𝐹

Q: How do we find 𝜇, 𝜎2?

A: Differentiate and find that

ො𝜇 =
σ𝑖 𝑥𝑖
𝑁

𝜎2 =
σ𝑖 𝑥𝑖 − ො𝜇 2

𝑁

Advanced 
topic



Learning:
Maximum Likelihood Estimation (MLE)

Central to machine learning:

• Observe some data (𝒳,𝒴)

• Compute some function 𝑓(𝒳) to {predict, explain, 
generate} 𝒴

• Assume 𝑓 is controlled by parameters 𝜃, i.e., 𝑓𝜃(𝒳)

– Sometimes written 𝑓(𝒳; 𝜃)



Learning:
Maximum Likelihood Estimation (MLE)

Central to machine learning:
• Observe some data (𝒳,𝒴)
• Compute some function 𝑓(𝒳) to {predict, explain, 

generate} 𝒴
• Assume 𝑓 is controlled by parameters 𝜃, i.e., 𝑓𝜃(𝒳)

– Sometimes written 𝑓(𝒳; 𝜃)

• Parameters are learned to minimize error (loss) ℓ

Advanced topic



Learning:
Maximum Likelihood Estimation (MLE)
Example: Can I sleep in the next 
time it snows/is school canceled?
• 𝒳 = 𝑥1, 𝑥2, … , 𝑥𝑁 are 

snowfall values from the 
previous N storms

• 𝒴 = 𝑦1, 𝑦2, … , 𝑦𝑁 are 
closure results from the 
previous N storms

• Goal: learn 𝜃 such that 𝑓
correctly predicts, as 
accurately as possible, if 
UMBC will close in the next 
storm:
– 𝑦𝑛+1

∗ from 𝑥𝑛+1

• If we assume the 
output of 𝑓 is a 
probability distribution
on 𝒴|𝒳…

➢𝑓 𝒳 →
{𝑝(yes|𝒳), 𝑝(no|𝒳)}

• Then re: 𝜃, {predicting, 
explaining, generating} 
𝒴 means… what?



Learning:
Maximum Likelihood Estimation (MLE)
Example: Can I sleep in the next 
time it snows/is school canceled?
• 𝒳 = 𝑥1, 𝑥2, … , 𝑥𝑁 are 

snowfall values from the 
previous N storms

• 𝒴 = 𝑦1, 𝑦2, … , 𝑦𝑁 are 
closure results from the 
previous N storms

• Goal: learn 𝜃 such that 𝑓
correctly predicts, as 
accurately as possible, if 
UMBC will close in the next 
storm:
– 𝑦𝑛+1

∗ from 𝑥𝑛+1

• If we assume the 
output of 𝑓 is a 
probability distribution
on 𝒴|𝒳…

• Then re: 𝜃, {predicting, 
explaining, generating} 
𝒴 means… what?



Learning:
Maximum Likelihood Estimation (MLE)
Example: Can I sleep in the next 
time it snows/is school canceled?
• 𝒳 = 𝑥1, 𝑥2, … , 𝑥𝑁 are 

snowfall values from the 
previous N storms

• 𝒴 = 𝑦1, 𝑦2, … , 𝑦𝑁 are 
closure results from the 
previous N storms

• Goal: learn 𝜃 such that 𝑓
correctly predicts, as 
accurately as possible, if 
UMBC will close in the next 
storm:
– 𝑦𝑛+1

∗ from 𝑥𝑛+1

• If we assume the 
output of 𝑓 is a 
probability distribution
on 𝒴|𝒳…

• Then re: 𝜃, {predicting, 
explaining, generating} 
𝒴 means finding a value 
for 𝜃 that maximizes 
the probability of 𝒴
given 𝒳



Learning:
Maximum Likelihood Estimation (MLE)
Example: Can I sleep in the next 
time it snows/is school canceled?
• 𝒳 = 𝑥1, 𝑥2, … , 𝑥𝑁 are 

snowfall values from the 
previous N storms

• 𝒴 = 𝑦1, 𝑦2, … , 𝑦𝑁 are 
closure results from the 
previous N storms

• Goal: learn 𝜃 such that 𝑓
correctly predicts, as 
accurately as possible, if 
UMBC will close in the next 
storm:
– 𝑦𝑛+1

∗ from 𝑥𝑛+1

• If we assume the output of 
𝑓 is a probability 
distribution on 𝒴|𝒳…

• Then re: 𝜃, {predicting, 
explaining, generating} 𝒴
means finding a value for 𝜃
that maximizes the 
probability of 𝒴 given 𝒳, 
according to 𝑓

• To model 𝒳: learn a 
distribution g, on 𝒳



Extended examples of MLE



Learning Parameters for 
the Die Model: Maximum 

Likelihood (Math)

𝑝 𝑤1, 𝑤2, … , 𝑤𝑁 = 𝑝 𝑤1 𝑝 𝑤2 ⋯𝑝 𝑤𝑁 =ෑ

𝑖

𝑝 𝑤𝑖

N different 
(independent) rolls

𝑤1 = 1

𝑤2 = 5

𝑤3 = 4

⋯

for roll 𝑖 = 1 to 𝑁:
𝑤𝑖 ∼ Cat(𝜃)

Generative Story

ℒ 𝜃 =෍

𝑖

log 𝑝𝜃(𝑤𝑖)

=෍

𝑖

log 𝜃𝑤𝑖

Maximize Log-likelihood

Advanced 
topic



Learning Parameters for 
the Die Model: Maximum 

Likelihood (Math)

𝑝 𝑤1, 𝑤2, … , 𝑤𝑁 = 𝑝 𝑤1 𝑝 𝑤2 ⋯𝑝 𝑤𝑁 =ෑ

𝑖

𝑝 𝑤𝑖

N different 
(independent) rolls

ℒ 𝜃 =෍

𝑖

log 𝜃𝑤𝑖
s. t.෍

𝑘=1

6

𝜃𝑘 = 1

Maximize Log-likelihood (with distribution constraints)

(we can include the 
inequality constraints 

0 ≤ 𝜃𝑘, but it complicates 
the problem and, right 

now, is not needed)

solve using Lagrange multipliers

Advanced 
topic



Learning Parameters for 
the Die Model: Maximum 

Likelihood (Math)

𝑝 𝑤1, 𝑤2, … , 𝑤𝑁 = 𝑝 𝑤1 𝑝 𝑤2 ⋯𝑝 𝑤𝑁 =ෑ

𝑖

𝑝 𝑤𝑖

N different 
(independent) rolls

ℱ 𝜃 =෍

𝑖

log 𝜃𝑤𝑖
− 𝜆 ෍

𝑘=1

6

𝜃𝑘 − 1

Maximize Log-likelihood (with distribution constraints)

(we can include the 
inequality constraints 

0 ≤ 𝜃𝑘, but it 
complicates the 

problem and, right 
now, is not needed)

𝜕ℱ 𝜃

𝜕𝜃𝑘
= ෍

𝑖:𝑤𝑖=𝑘

1

𝜃𝑤𝑖

− 𝜆 𝜕ℱ 𝜃

𝜕𝜆
= −෍

𝑘=1

6

𝜃𝑘 + 1

Advanced 
topic



Learning Parameters for 
the Die Model: Maximum 

Likelihood (Math)

𝑝 𝑤1, 𝑤2, … , 𝑤𝑁 = 𝑝 𝑤1 𝑝 𝑤2 ⋯𝑝 𝑤𝑁 =ෑ

𝑖

𝑝 𝑤𝑖

N different 
(independent) rolls

ℱ 𝜃 =෍

𝑖

log 𝜃𝑤𝑖
− 𝜆 ෍

𝑘=1

6

𝜃𝑘 − 1

Maximize Log-likelihood (with distribution constraints)

(we can include the 
inequality constraints 

0 ≤ 𝜃𝑘, but it 
complicates the 

problem and, right 
now, is not needed)

𝜃𝑘 =
σ𝑖:𝑤𝑖=𝑘

1

𝜆 optimal 𝜆 when෍

𝑘=1

6

𝜃𝑘 = 1

Advanced 
topic



Learning Parameters for 
the Die Model: Maximum 

Likelihood (Math)

𝑝 𝑤1, 𝑤2, … , 𝑤𝑁 = 𝑝 𝑤1 𝑝 𝑤2 ⋯𝑝 𝑤𝑁 =ෑ

𝑖

𝑝 𝑤𝑖

N different 
(independent) rolls

ℱ 𝜃 =෍

𝑖

log 𝜃𝑤𝑖
− 𝜆 ෍

𝑘=1

6

𝜃𝑘 − 1

Maximize Log-likelihood (with distribution constraints)

(we can include the 
inequality constraints 

0 ≤ 𝜃𝑘, but it 
complicates the 

problem and, right 
now, is not needed)

𝜃𝑘 =
σ𝑖:𝑤𝑖=𝑘

1

σ𝑘σ𝑖:𝑤𝑖=𝑘
1
=
𝑁𝑘
𝑁 optimal 𝜆 when෍

𝑘=1

6

𝜃𝑘 = 1

Advanced 
topic



Example: Conditionally Rolling a Die

𝑝 𝑤1, 𝑤2, … , 𝑤𝑁 = 𝑝 𝑤1 𝑝 𝑤2 ⋯𝑝 𝑤𝑁 =ෑ

𝑖

𝑝 𝑤𝑖

𝑝 𝑧1, 𝑤1, 𝑧2, 𝑤2, … , 𝑧𝑁, 𝑤𝑁 = 𝑝 𝑧1 𝑝 𝑤1|𝑧1 ⋯𝑝 𝑧𝑁 𝑝 𝑤𝑁|𝑧𝑁

=ෑ

𝑖

𝑝 𝑤𝑖|𝑧𝑖 𝑝 𝑧𝑖

add complexity to better 
explain what we see



Example: Conditionally Rolling a Die

𝑝 𝑤1, 𝑤2, … , 𝑤𝑁 = 𝑝 𝑤1 𝑝 𝑤2 ⋯𝑝 𝑤𝑁 =ෑ

𝑖

𝑝 𝑤𝑖

𝑝 𝑧1, 𝑤1, 𝑧2, 𝑤2, … , 𝑧𝑁, 𝑤𝑁 = 𝑝 𝑧1 𝑝 𝑤1|𝑧1 ⋯𝑝 𝑧𝑁 𝑝 𝑤𝑁|𝑧𝑁

=ෑ

𝑖

𝑝 𝑤𝑖|𝑧𝑖 𝑝 𝑧𝑖

⋯

𝑧1 = 𝑇

𝑧2 = 𝐻

First flip a coin…

add complexity to better 
explain what we see



Example: Conditionally Rolling a Die

𝑝 𝑤1, 𝑤2, … , 𝑤𝑁 = 𝑝 𝑤1 𝑝 𝑤2 ⋯𝑝 𝑤𝑁 =ෑ

𝑖

𝑝 𝑤𝑖

𝑝 𝑧1, 𝑤1, 𝑧2, 𝑤2, … , 𝑧𝑁, 𝑤𝑁 = 𝑝 𝑧1 𝑝 𝑤1|𝑧1 ⋯𝑝 𝑧𝑁 𝑝 𝑤𝑁|𝑧𝑁

=ෑ

𝑖

𝑝 𝑤𝑖|𝑧𝑖 𝑝 𝑧𝑖

add complexity to better 
explain what we see

𝑤1 = 1

𝑤2 = 5

⋯

𝑧1 = 𝑇

𝑧2 = 𝐻

First flip a coin…
…then roll a different die 
depending on the coin flip



Learning in Conditional Die Roll Model: 
Maximize (Log-)Likelihood

𝑝 𝑤1, 𝑤2, … , 𝑤𝑁 = 𝑝 𝑤1 𝑝 𝑤2 ⋯𝑝 𝑤𝑁 =ෑ

𝑖

𝑝 𝑤𝑖

𝑝 𝑧1, 𝑤1, 𝑧2, 𝑤2, … , 𝑧𝑁, 𝑤𝑁 = 𝑝 𝑧1 𝑝 𝑤1|𝑧1 ⋯𝑝 𝑧𝑁 𝑝 𝑤𝑁|𝑧𝑁

=ෑ

𝑖

𝑝 𝑤𝑖|𝑧𝑖 𝑝 𝑧𝑖

add complexity to better 
explain what we see

If you observe the 𝑧𝑖
values, this is easy!



Learning in Conditional Die 
Roll Model: Maximize 

(Log-)Likelihood
𝑝 𝑧1, 𝑤1, 𝑧2, 𝑤2, … , 𝑧𝑁, 𝑤𝑁 =ෑ

𝑖

𝑝 𝑤𝑖|𝑧𝑖 𝑝 𝑧𝑖

If you observe the 𝑧𝑖
values, this is easy!

First: Write the Generative Story

𝜆 = distribution over coin (z)

𝛾(𝐻) = distribution for die when coin comes up heads

𝑤𝑖 ~ Cat 𝛾(𝑧𝑖)

𝛾(𝑇) = distribution for die when coin comes up tails

for item 𝑖 = 1 to 𝑁:
𝑧𝑖 ~ Bernoulli 𝜆

Advanced 
topic



Learning in Conditional Die 
Roll Model: Maximize 

(Log-)Likelihood
𝑝 𝑧1, 𝑤1, 𝑧2, 𝑤2, … , 𝑧𝑁, 𝑤𝑁 =ෑ

𝑖

𝑝 𝑤𝑖|𝑧𝑖 𝑝 𝑧𝑖

If you observe the 𝑧𝑖
values, this is easy!

First: Write the Generative Story

𝜆 = distribution over coin (z)

𝛾(𝐻) = distribution for H die

𝑤𝑖 ~ Cat 𝛾(𝑧𝑖)

𝛾(𝑇) = distribution for T die

for item 𝑖 = 1 to 𝑁:
𝑧𝑖 ~ Bernoulli 𝜆

Second: Generative Story → Objective

ℱ 𝜃 =෍

𝑖

𝑛

(log 𝜆𝑧𝑖 + log 𝛾𝑤𝑖

(𝑧𝑖))

−𝜂 ෍

𝑘=1

2

𝜆𝑘 − 1 −෍

𝑘

2

𝛿𝑘 ෍

𝑗

6

𝛾𝑗
(𝑘)

− 1
Lagrange multiplier 

constraints

Advanced 
topic



Learning in Conditional Die 
Roll Model: Maximize 

(Log-)Likelihood
𝑝 𝑧1, 𝑤1, 𝑧2, 𝑤2, … , 𝑧𝑁, 𝑤𝑁 =ෑ

𝑖

𝑝 𝑤𝑖|𝑧𝑖 𝑝 𝑧𝑖

If you observe the 𝑧𝑖
values, this is easy!

First: Write the Generative Story

𝜆 = distribution over coin (z)

𝛾(𝐻) = distribution for H die

𝑤𝑖 ~ Cat 𝛾(𝑧𝑖)

𝛾(𝑇) = distribution for T die

for item 𝑖 = 1 to 𝑁:
𝑧𝑖 ~ Bernoulli 𝜆

Second: Generative Story → Objective

ℱ 𝜃 =෍

𝑖

𝑛

(log 𝜆𝑧𝑖 + log 𝛾𝑤𝑖

(𝑧𝑖))

−𝜂 ෍

𝑘=1

2

𝜆𝑘 − 1 −෍

𝑘=1

2

𝛿𝑘 ෍

𝑗=1

6

𝛾𝑗
(𝑘)

− 1

Advanced 
topic



Learning in Conditional Die 
Roll Model: Maximize 

(Log-)Likelihood
𝑝 𝑧1, 𝑤1, 𝑧2, 𝑤2, … , 𝑧𝑁, 𝑤𝑁 =ෑ

𝑖

𝑝 𝑤𝑖|𝑧𝑖 𝑝 𝑧𝑖

If you observe the 𝑧𝑖
values, this is easy!

First: Write the Generative Story

𝜆 = distribution over coin (z)

𝛾(𝐻) = distribution for H die

𝑤𝑖 ~ Cat 𝛾(𝑧𝑖)

𝛾(𝑇) = distribution for T die

for item 𝑖 = 1 to 𝑁:
𝑧𝑖 ~ Bernoulli 𝜆

Second: Generative Story → Objective

ℱ 𝜃 =෍

𝑖

𝑛

(log 𝜆𝑧𝑖 + log 𝛾𝑤𝑖

(𝑧𝑖))

−𝜂 ෍

𝑘=1

2

𝜆𝑘 − 1 −෍

𝑘=1

2

𝛿𝑘 ෍

𝑗=1

6

𝛾𝑗
(𝑘)

− 1

But if you don’t observe the 
𝑧𝑖 values, this is not easy!

Advanced 
topic



Model selection

Goal: Select the best network structure, given 
the data

Input:
– Training data

– Scoring function

Output:
– A network that maximizes the score

164



Structure selection: Scoring

• Bayesian: prior over parameters and structure
– get balance between model complexity and fit to data as a 

byproduct

• Score (G:D) = log P(G|D)  log [P(D|G) P(G)]
• Marginal likelihood just comes from our parameter estimates
• Prior on structure can be any measure we want; typically a 

function of the network complexity

Same key property: Decomposability

Score(structure) = Si Score(family of Xi)

Marginal likelihood
Prior

165



Heuristic search

B E

A

C

B E

A

C

B E

A

C

B E

A

C
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Exploiting decomposability

B E

A

C

B E

A

C

B E

A

C

B E

A

C

To recompute scores, 

only need to re-score families

that changed in the last move
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