
CMSC 471
Artificial Intelligence

Search

Frank Ferraro – ferraro@umbc.edu

Some material adopted from notes

by Charles R. Dyer, University of

Wisconsin-Madison

Many slides courtesy Tim Finin

“AI can be
summarized in two
approaches: search,

and averaging.”

My own
undergrad AI

professor

Today’s topics
• Goal-based agents

• Representing states and actions

• Example problems

• Generic state-space search algorithm

• Specific algorithms
– Breadth-first search
– Depth-first search
– Uniform cost search
– Depth-first iterative deepening

• Example problems revisited

Okay, but really? What is
AI?

“Artificial intelligence, or AI, is the field that studies
the synthesis and analysis of computational agents

that act intelligently.” --Poole & Mackworth

• Makes appropriate actions
for circumstances & goals

• Balances short & long-term
appropriately

• Flexible & reactive
• Learns/recognizes patterns

• Aware of
computational/task

budgets & limitations

something that acts in an
environment; it does

something.

Use “computation” to
explain and traceback the

actions

Recap

Agents

Fig. 2.1

“Sensors” “Actions”

Recap

(0) Table-driven agents

Use percept sequence/action table to find next

action. Implemented by a lookup table

(1) Simple reflex agents

Based on condition-action rules, stateless devices

with no memory of past world states

(2) Agents with memory

represent states and keep track of past world states

(3) Agents with goals

Have a state and goal information describing desirable

situations; can take future events into consideration

(4) Utility-based agents

base decisions on utility theory in order to act rationally

simple

complex

Courtesy Tim Finin

Recap

https://en.wikipedia.org/wiki/Utility

(3) Architecture for goal-based agent
state and goal information describe desirable
situations allowing agent to take future events into
consideration

Courtesy Tim Finin

Recap

Big Idea
Allen Newell and Herb Simon developed
the problem space principle as an AI
approach in the late 60s/early 70s

"The rational activity in which people engage to solve a
problem can be described in terms of (1) a set of states
of knowledge, (2) operators for changing one state into
another, (3) constraints on applying operators and (4)
control knowledge for deciding which operator to apply
next."

Newell A & Simon H A. Human problem solving.

Englewood Cliffs, NJ: Prentice-Hall. 1972.

https://en.wikipedia.org/wiki/Allen_Newell
https://en.wikipedia.org/wiki/Herbert_A._Simon

Big Idea
Allen Newell and Herb Simon developed
the problem space principle as an AI
approach in the late 60s/early 70s

"The rational activity in which people engage to solve a
problem can be described in terms of (1) a set of states
of knowledge, (2) operators for changing one state into
another, (3) constraints on applying operators and (4)
control knowledge for deciding which operator to apply
next."

Newell A & Simon H A. Human problem solving.

Englewood Cliffs, NJ: Prentice-Hall. 1972.

We’ll achieve this by
formulating an appropriate

graph and then applying
graph search algorithms to it

https://en.wikipedia.org/wiki/Allen_Newell
https://en.wikipedia.org/wiki/Herbert_A._Simon

Remember: Graphs

• A graph G = (E, V)
• V = set of vertices (nodes)
• E = set of edges between pairs of nodes, (𝑥, 𝑦)

G can be:
• Undirected: order of (𝑥, 𝑦) doesn’t matter

– These are symmetric

• Directed: order of (𝑥, 𝑦) does matter
• Weighted: cost function 𝑔(𝑥, 𝑦)
• (among other qualities)

Remember: Graphs

• A graph G = (E, V)

• V = set of vertices (nodes)

• E = set of edges between pairs of nodes

a

b

c
V= { ??? }

E = { ??? }

Remember: Graphs

• A graph G = (E, V)

• V = set of vertices (nodes)

• E = set of edges between pairs of nodes

a

b

c
V= { a, b, c }

E = { (a, c), (b, c) }

undirected

Remember: Graphs

• A graph G = (E, V)

• V = set of vertices (nodes)

• E = set of edges between pairs of nodes

a

b

c
V= { ??? }

E = { ??? }

Remember: Graphs

• A graph G = (E, V)

• V = set of vertices (nodes)

• E = set of edges between pairs of nodes

V= { a, b, c }

E = { (a, c), (b, c) }

a

b

c

directed

Remember: Graphs

• A graph G = (E, V)

• V = set of vertices (nodes)

• E = set of edges between pairs of nodes

V= { a, b, c }

E = { (a, c), (c, b) }

a

b

c

directed

Remember: Graphs

• A graph G = (E, V)

• V = set of vertices (nodes)

• E = set of edges between pairs of nodes

a

b

c
V= { ??? }

E = { ??? }

g = ???

4

5

1

Remember: Graphs

• A graph G = (E, V)

• V = set of vertices (nodes)

• E = set of edges between pairs of nodes

a

b

c

V= { a, b, c }

E = { (a,c), (b, c), (c, b) }

g = {(a, c): 4, (b, c): 5, (c, b): 1}

4

5

1

weighted, directed

Some Key Terms: States, Goal, and
Solution

State: a representation of the current
world/environment (as needed for the agent)

Initial State: The state the agent/problem starts in

Goal State: The desired state

Solution: a sequence of actions that operate
sequentially on states and allow the agent to

achieve its goal

Example: 8-Puzzle

Given an initial configuration of 8 numbered
tiles on a 3x3 board, move the tiles to
produce a desired goal configuration

Building goal-based agents
We must answer the following questions
–How do we represent the state of the “world”?

–What is the goal and how can we recognize it?

–What are the possible actions?

–What relevant information do we encode to describe
states, actions and their effects and thereby solve the
problem?

initial state goal state

Representing states

• State of an 8-puzzle?

Representing states

• State of an 8-puzzle?

• A 3x3 array of integer in {0..8}

• No integer appears twice

• 0 represents the empty space

• In Python, we might implement this using a nine-
character string: “540681732”

• And write functions to map the 2D coordinates to
an index

What’s the goal to be achieved?

• Describe situation we want to achieve, a set
of properties that we want to hold, etc.

• Defining a goal test function that when
applied to a state returns True or False

• For our problem:
def isGoal(state):

return state == “123405678”

What are the actions?
• Primitive actions for changing the state

In a deterministic world: no uncertainty in an
action’s effects (simple model)

• Given action and description of current
world state, action completely specifies

– Whether action can be applied to the current
world (i.e., is it applicable and legal?) and

– What state results after action is performed in
the current world (i.e., no need for history
information to compute the next state)

Representing actions

• Actions ideally considered as discrete events
that occur at an instant of time

• Example, in a planning context

– If state:inClass and perform action:goHome, then
next state is state:atHome

– There’s no time where you’re neither in class nor at
home (i.e., in the state of “going home”)

Representing actions

• Actions for 8-puzzle?

Representing actions

• Actions for 8-puzzle?

• Number of actions/operators depends on the
representation used in describing a state
– Specify 4 possible moves for each of the 8 tiles,

resulting in a total of 4*8=32 operators

– Or: Specify four moves for “blank” square and we
only need 4 operators

• Representational shift can simplify a problem!

Representing states

• Size of a problem usually described in
terms of possible number of states

– Tic-Tac-Toe has about 39 states (19,683≈2*104)

– Checkers has about 1040 states

– Rubik’s Cube has about 1019 states

– Chess has about 10120 states in a typical game

– Go has 2*10170

– Theorem provers may deal with an infinite space

• State space size ≈ solution difficulty

Representing states

• Our estimates were loose upper bounds

• How many possible, legal states does tic-
tac-toe really have?

• Simple upper bound: nine board cells, each
of which can be empty, O or X, so 39

• Only 593 states after eliminating

– impossible states

– Rotations and reflections
X

X

X X

Some example problems

• Toy problems and micro-worlds

–8-Puzzle

–Missionaries and Cannibals

–Cryptarithmetic

–8-Queens Puzzle

–Remove 5 Sticks

–Water Jug Problem

• Real-world problems

Example: The 8-Queens Puzzle

Place eight queens
on a chessboard
such that no queen
attacks any other

We can generalize
the problem to a
NxN chessboard

What are the states, goal test, actions?

http://en.wikipedia.org/wiki/Eight_queens_puzzle

Some more real-world problems

• Route finding

• Touring (traveling salesman)

• Logistics

• VLSI layout

• Robot navigation

• Theorem proving

• Learning

Water Jug Problem
• Two jugs J1 & J2 with capacity C1 & C2
• Initially J1 has W1 water and J2 has W2 water

– e.g.: full 5 gallon jug and empty 2 gallon jug

• Possible actions:
– Pour from jug X to jug Y until X empty or Y full
– Empty jug X onto the floor

• Goal: J1 has G1 water and J2 G2
– G1 or G2 can be -1 to represent any amount

• E.g.: initially full jugs with capacities 3 and 1
liters, goal is to have 1 liter in each

https://en.wikipedia.org/wiki/Water_pouring_puzzle

So…

• How can we represent the states?
• What an initial state
• How do we recognize a goal state
• What are the actions; how can we tell which ones

can be performed in a given state; what is the
resulting state

• How do we search for a solution from an initial
state given a goal state

• What is a solution? The goal state achieved or a
path to it?

Search in a state space
• Basic idea:

–Create representation of initial state

–Try all possible actions & connect states that result

–Recursively apply process to the new states until we
find a solution or dead ends

• We need to keep track of the connections
between states and might use a

–Tree data structure or

–Graph data structure

• A graph structure is best in general…

Formalizing state space search

• A state space is a graph (V, E) where V is a set
of nodes and E is a set of arcs, and each arc is
directed from a node to another node

• Nodes: data structures with state description
and other info, e.g., node’s parent, name of
action that generated it from parent, etc.

• Arcs: instances of actions, head is a state, tail
is the state that results from action

Formalizing search in a state space
• Each arc has fixed, positive cost associated

with it corresponding to the action cost
– Simple case: all costs are 1

• Each node has a set of successor nodes
corresponding to all legal actions that can be
applied at node’s state
– Expanding a node = generating its successor nodes and

adding them and their associated arcs to the graph

• One or more nodes are marked as start nodes

• A goal test predicate is applied to a state to
determine if its associated node is a goal node

Example: Water Jug Problem

• Two jugs J1 and J2 with capacity C1 and C2

• Initially J1 has W1 water and J2 has W2 water
– e.g.: a full 5-gallon jug and an empty 2-gallon jug

• Possible actions:
– Pour from jug X to jug Y until X empty or Y full

– Empty jug X onto the floor

• Goal: J1 has G1 water and J2 G2
– G1 or G0 can be -1 to represent any amount

5 2

Example: Water Jug Problem

Given full 5-gal. jug and
empty 2-gal. jug, fill 2-
gal jug with one gallon

• State representation?

–General state?

–Initial state?

–Goal state?

• Possible actions?
–Condition?

–Resulting state?

Name Cond. Transition Effect

Empty5 (x,y)→(0,y)
Empty 5G

jug

Empty2 (x,y)→(x,0)
Empty 2G

jug

2to5 x ≤ 3 (x,2)→(x+2,0)
Pour 2G into

5G

5to2 x ≥ 2 (x,0)→(x-2,2)
Pour 5G into

2G

5to2part y < 2 (1,y)→(0,y+1)
Pour partial

5G into 2G

Action table

5 2

Example: Water Jug Problem

Given full 5-gal. jug
and empty 2-gal. jug,
fill 2-gal jug with one
gallon
•State = (x,y), where x is
water in jug 1; y is water
in jug 2

• Initial State = (5,0)

•Goal State = (-1,1), where
-1 means any amount

Name Cond. Transition Effect

dump1 x>0 (x,y)→(0,y) Empty Jug 1

dump2 y>0 (x,y)→(x,0) Empty Jug 2

pour_1_2
x>0 &

y<C2

(x,y)→(x-D,y+D)

D = min(x,C2-y)

Pour from Jug

1 to Jug 2

pour_2_1
y>0 &

X<C1

(x,y)→(x+D,y-D)

D = min(y,C1-x)

Pour from Jug

2 to Jug 1

Action table

5 2

Formalizing search

• Solution: sequence of actions associated with
a path from a start node to a goal node

• Solution cost: sum of the arc costs on the
solution path

– If all arcs have same (unit) cost, then
solution cost is length of solution (number
of steps)

–Algorithms generally require that arc costs
cannot be negative (why?)

Formalizing search
• State-space search: searching through state space for

solution by making explicit a portion of an implicit
state-space graph to find a goal node

– Can’t materializing whole space for large problems

– Initially V={S}, where S is the start node, E={}

– On expanding S, its successor nodes are generated and
added to V and associated arcs added to E

– Process continues until a goal node is found

• Nodes represent a partial solution path (+ cost of
partial solution path) from S to the node

– From a node there may be many possible paths (and thus
solutions) with this partial path as a prefix

A General Searching Algorithm

Core ideas:
1. Maintain a list of

frontier (fringe) nodes
1. Nodes coming

into the frontier
have been
explored

2. Nodes going out
of the frontier
have not been
explored

2. Iteratively select
nodes from the
frontier and explore
unexplored nodes
from the frontier

3. Stop when you reach

your goal

Figure 3.3

State-space search algorithm

;; problem describes the start state, operators, goal test, and operator costs

;; queueing-function is a comparator function that ranks two states

;; general-search returns either a goal node or failure

function general-search (problem, QUEUEING-FUNCTION)

nodes = MAKE-QUEUE(MAKE-NODE(problem.INITIAL-STATE))

loop

if EMPTY(nodes) then return "failure"

node = REMOVE-FRONT(nodes)

if problem.GOAL-TEST(node.STATE) succeeds

then return node

nodes = QUEUEING-FUNCTION(nodes, EXPAND(node,

problem.OPERATORS))

end

;; Note: The goal test is NOT done when nodes are generated

;; Note: This algorithm does not detect loops

Key procedures to be defined

• EXPAND

– Generate a node’s successor nodes, adding them to the
graph if not already there

• GOAL-TEST

– Test if state satisfies all goal conditions

•QUEUEING-FUNCTION

– Maintain ranked list of nodes that are candidates for
expansion

– Changing definition of the QUEUEING-FUNCTION leads to
different search strategies

Same general search algorithm, from
Poole & Mackworth

(They formulate it in terms
of paths, not individual
nodes---conceptually,

that’s fine!)

Same general search algorithm, from
Poole & Mackworth

(They formulate it in terms
of paths, not individual
nodes---conceptually,

that’s fine!)

Initialize the frontier

Same general search algorithm, from
Poole & Mackworth

(They formulate it in terms
of paths, not individual
nodes---conceptually,

that’s fine!)

Pick a path from the
frontier

Same general search algorithm, from
Poole & Mackworth

(They formulate it in terms
of paths, not individual
nodes---conceptually,

that’s fine!)

If the end state in the path
achieves our goal, return

the path

Same general search algorithm, from
Poole & Mackworth

(They formulate it in terms
of paths, not individual
nodes---conceptually,

that’s fine!)

Else, add all one-hop
extensions of this path to

the frontier

What does “search”
look like for a

particular problem?

1 2 3

4 5

7 8 6

1 2 3

4 5

7 8 6

1 3

4 2 5

7 8 6

1 2

4 5 3

7 8 6

1 2 3

4 5 6

7 8

1 2 3

4 5

7 8 6

1 2 3

4 8 5

7 6

1 2 3

4 8 5

7 6

1 2 3

4 8 5

7 6

1 2

4 8 3

7 6 5

1 2 3

4 8

7 6 5

goal

start

1 2 3

4 5

7 8 6

1 2 3

4 5

7 8 6

1 3

4 2 5

7 8 6

1 2

4 5 3

7 8 6

1 2 3

4 5 6

7 8

1 2 3

4 5

7 8 6

1 2 3

4 8 5

7 6

1 2 3

4 8 5

7 6

1 2 3

4 8 5

7 6

1 2

4 8 3

7 6 5

1 2 3

4 8

7 6 5

goal

start

Expanding a node on the fringe
(taking a certain action)

1 2 3

4 5

7 8 6

1 2 3

4 5

7 8 6

1 3

4 2 5

7 8 6

1 2

4 5 3

7 8 6

1 2 3

4 5 6

7 8

1 2 3

4 5

7 8 6

1 2 3

4 8 5

7 6

1 2 3

4 8 5

7 6

1 2 3

4 8 5

7 6

1 2

4 8 3

7 6 5

1 2 3

4 8

7 6 5

goal

start

Expanding a node on the fringe
(taking a certain action). Not all

actions shown.

1 2 3

4 5

7 8 6

1 2 3

4 5

7 8 6

1 3

4 2 5

7 8 6

1 2

4 5 3

7 8 6

1 2 3

4 5 6

7 8

1 2 3

4 5

7 8 6

1 2 3

4 8 5

7 6

1 2 3

4 8 5

7 6

1 2 3

4 8 5

7 6

1 2

4 8 3

7 6 5

1 2 3

4 8

7 6 5

goal

start

Expanding a node on the fringe
(taking a certain action). Not all

actions shown.

1 2 3

4 5

7 8 6

1 2 3

4 5

7 8 6

1 3

4 2 5

7 8 6

1 2

4 5 3

7 8 6

1 2 3

4 5 6

7 8

1 2 3

4 5

7 8 6

1 2 3

4 8 5

7 6

1 2 3

4 8 5

7 6

1 2 3

4 8 5

7 6

1 2

4 8 3

7 6 5

1 2 3

4 8

7 6 5

goal

start

Expanding a node on the fringe
(taking a certain action). Not all

actions shown.

1 2 3

4 5

7 8 6

1 2 3

4 5

7 8 6

1 3

4 2 5

7 8 6

1 2

4 5 3

7 8 6

1 2 3

4 5 6

7 8

1 2 3

4 5

7 8 6

1 2 3

4 8 5

7 6

1 2 3

4 8 5

7 6

1 2 3

4 8 5

7 6

1 2

4 8 3

7 6 5

1 2 3

4 8

7 6 5

goal

start

Informed vs. uninformed search

Uninformed search strategies (blind search)

–Use no information about likely direction of a goal

–Methods: breadth-first, depth-first, depth-limited,
uniform-cost, depth-first iterative deepening,
bidirectional

Informed search strategies (heuristic search)

–Use information about domain to (try to) (usually)
head in the general direction of goal node(s)

–Methods: hill climbing, best-first, greedy search,
beam search, algorithm A, algorithm A*

https://en.wikipedia.org/wiki/Heuristic

Evaluating search strategies

• Completeness

– Guarantees finding a solution whenever one exists

• Time complexity (worst or average case)

• Space complexity

• Optimality/Admissibility

Evaluating search strategies

• Completeness

– Guarantees finding a solution whenever one exists

• Time complexity (worst or average case)

– Usually measured by number of nodes expanded

• Space complexity

• Optimality/Admissibility

Evaluating search strategies

• Completeness

– Guarantees finding a solution whenever one exists

• Time complexity (worst or average case)

– Usually measured by number of nodes expanded

• Space complexity

– Usually measured by maximum size of graph/tree
during the search

• Optimality/Admissibility

Evaluating search strategies
• Completeness

– Guarantees finding a solution whenever one exists

• Time complexity (worst or average case)

– Usually measured by number of nodes expanded

• Space complexity

– Usually measured by maximum size of graph/tree
during the search

• Optimality/Admissibility

– If a solution is found, is it guaranteed to be an
optimal one, i.e., one with minimum cost

Example of uninformed search strategies

S

CBA

D GE

3 1 8

15
20 5

3
7

Consider this search space where S is the start

node and G is the goal. Numbers are arc costs.

Classic uninformed search methods

• The four classic uninformed search methods

–Breadth first search (BFS)

–Depth first search (DFS)

–Uniform cost search (generalization of BFS)

– Iterative deepening (blend of DFS and BFS)

• To which we can add another technique

–Bi-directional search (hack on BFS)

Breadth-First Search

• Enqueue nodes in FIFO (first-in, first-out) order

• Complete

• Optimal (i.e., admissible) finds shorted path,
which is optimal if all operators have same cost

• Q? Time & space complexity

• Q? Potential issues

Breadth-First Search

• Enqueue nodes in FIFO (first-in, first-out) order

• Complete

• Optimal (i.e., admissible) finds shorted path,
which is optimal if all operators have same cost

• Exponential time and space complexity, O(bd),
where d is depth of solution; b is branching
factor (i.e., # of children)

• Q? Potential issues

Breadth-First Search

• Enqueue nodes in FIFO (first-in, first-out) order

• Complete

• Optimal (i.e., admissible) finds shorted path,
which is optimal if all operators have same cost

• Exponential time and space complexity, O(bd),
where d is depth of solution; b is branching
factor (i.e., # of children)

• Takes a long time to find solutions with large
number of steps because must explore all
shorter length possibilities first

Breadth-First Search

Expanded node Nodes list (aka Fringe)

{ S0 }

S0 { A3 B1 C8 }

A3 { B1 C8 D6 E10 G18 }

B1 { C8 D6 E10 G18 G21 }

C8 { D6 E10 G18 G21 G13 }

D6 { E10 G18 G21 G13 }

E10 { G18 G21 G13 }

G18 { G21 G13 }

Note: we typically don’t check for goal until we expand node
Solution path found is S A G , cost 18
Number of nodes expanded (including goal node) = 7

Notation

G18

G is node; 18 is
cost of shortest

known path from

start node S

weighted arcs

Breadth-First Search

Long time to find solutions with many steps: we
must look at all shorter length possibilities first

• Complete search tree of depth d where nodes have b
children has 1 + b + b2 + ... + bd = (b(d+1) - 1)/(b-1)
nodes = 0(bd)

• Tree of depth 12 with branching 10 has more than
a trillion nodes

• If BFS expands 1000 nodes/sec and nodes uses 100
bytes, then it may take 35 years to run and uses
111 terabytes of memory!

Depth-First (DFS)
• Enqueue nodes on nodes in LIFO (last-in, first-out)

order, i.e., use stack data structure to order nodes

• May not terminate w/o depth bound, i.e., ending
search below fixed depth D (depth-limited search)

• Not complete (with or w/o cycle detection, with or
w/o a cutoff depth)

• Exponential time, O(bd), but linear space, O(bd)

• Can find long solutions quickly if lucky (and short
solutions slowly if unlucky!)

• On reaching deadend, can only back up one level
at a time even if problem occurs because of a bad
choice at top of tree

Depth-First Search

Expanded node Nodes list

{ S0 }

S0 { A3 B1 C8 }

A3 { D6 E10 G18 B1 C8 }

D6 { E10 G18 B1 C8 }

E10 { G18 B1 C8 }

G18 { B1 C8 }

Solution path found is S A G, cost 18

Number of nodes expanded (including goal node) = 5

Uniform-Cost Search (UCS)
• Enqueue nodes by path cost. i.e., let g(n) = cost of

path from start to current node n. Sort nodes by
increasing value of g(n).

• Also called Dijkstra’s Algorithm, similar to Branch
and Bound Algorithm from operations research

• Complete (*)

• Optimal/Admissible (*)

Depends on goal test being applied when node is removed
from nodes list, not when its parent node is expanded &
node first generated

• Exponential time and space complexity, O(bd)

https://en.wikipedia.org/wiki/Edsger_W._Dijkstra

Uniform-Cost Search
Expanded node Nodes list

{ S0 }

S0 { B1 A3 C8 }

B1 { A3 C8 G21 }

A3 { D6 C8 E10 G18 G21 }

D6 { C8 E10 G18 G21 }

C8 { E10 G13 G18 G21 }

E10 { G13 G18 G21 }

G13 { G18 G21 }

Solution path found is S C G, cost 13

Number of nodes expanded (including goal node) = 7

Depth-First Iterative Deepening (DFID)
• Do DFS to depth 0, then (if no solution) DFS to

depth 1, etc.

• Usually used with a tree search

• Complete

• Optimal/Admissible if all operators have unit
cost, else finds shortest solution (like BFS)

• Time complexity a bit worse than BFS or DFS
Nodes near top of search tree generated many times,
but since almost all nodes are near tree bottom,
worst case time complexity still exponential, O(bd)

• If branching factor is b and solution is at depth d,
then nodes at depth d are generated once, nodes
at depth d-1 are generated twice, etc.
–Hence bd + 2b(d-1) + ... + db <= bd / (1 - 1/b)2 = O(bd).

– If b=4, worst case is 1.78 * 4d, i.e., 78% more nodes
searched than exist at depth d (in worst case)

• Linear space complexity, O(bd), like DFS

• Has advantages of BFS (completeness) and DFS
(i.e., limited space, finds longer paths quickly)

• Preferred for large state spaces where solution
depth is unknown

Depth-First Iterative Deepening (DFID)

How they perform
• Depth-First Search:

– 4 Expanded nodes: S A D E G

– Solution found: S A G (cost 18)

• Breadth-First Search:
– 7 Expanded nodes: S A B C D E G

– Solution found: S A G (cost 18)

• Uniform-Cost Search:
– 7 Expanded nodes: S A D B C E G

– Solution found: S C G (cost 13)

Only uninformed search that worries about costs

• Iterative-Deepening Search:
– 10 nodes expanded: S S A B C S A D E G

– Solution found: S A G (cost 18)

Searching Backward from Goal

• Usually a successor function is reversible

– i.e., can generate a node’s predecessors in graph

• If we know a single goal (rather than a goal’s
properties), we could search backward to the
initial state

• It might be more efficient

– Depends on whether the graph fans in or out

Bi-directional search

•Alternate searching from the start state toward the goal
and from the goal state toward the start

• Stop when the frontiers intersect

•Works well only when there are unique start & goal states

• Requires ability to generate “predecessor” states

• Can (sometimes) lead to finding a solution more quickly

Comparing Search Strategies

Informed (Heuristic) Search

• Heuristic search
• Best-first search
–Greedy search
–Beam search
–A* Search

• Memory-conserving variations of A*
• Heuristic functions

Big idea: heuristic
Merriam-Webster's Online Dictionary

Heuristic (pron. \hyu-’ris-tik\): adj. [from Greek heuriskein to discover]
involving or serving as an aid to learning, discovery, or problem-solving
by experimental and especially trial-and-error methods

The Free On-line Dictionary of Computing (15Feb98)

heuristic 1. <programming> A rule of thumb, simplification or educated
guess that reduces or limits the search for solutions in domains that are
difficult and poorly understood. Unlike algorithms, heuristics do not
guarantee feasible solutions and are often used with no theoretical
guarantee. 2. <algorithm> approximation algorithm.

From WordNet (r) 1.6

heuristic adj 1: (CS) relating to or using a heuristic rule 2: of or relating to
a general formulation that serves to guide investigation [ant: algorithmic]
n : a commonsense rule (or set of rules) intended to increase the
probability of solving some problem [syn: heuristic rule, heuristic
program]

https://en.wikipedia.org/wiki/Heuristic

Heuristics, More Formally

ℎ(𝑛) is a heuristic function, that maps a state 𝑛
to an estimated cost from 𝑛-to-goal

Heuristics, More Formally

ℎ(𝑛) is a heuristic function, that maps a state 𝑛
to an estimated cost from 𝑛-to-goal

ℎ(𝑛) is admissible iff ℎ 𝑛 ≤ the lowest actual
cost from 𝑛-to-goal

Heuristics, More Formally

ℎ(𝑛) is a heuristic function, that maps a state 𝑛
to an estimated cost from 𝑛-to-goal

ℎ(𝑛) is admissible iff ℎ 𝑛 ≤ the lowest actual
cost from 𝑛-to-goal

ℎ(𝑛) is consistent iff
ℎ 𝑛 ≤ lowestcost 𝑛, 𝑛′ + ℎ(𝑛′)

Informed methods add
domain-specific information

• Select best path along which to continue
searching

• h(n): estimates goodness of node n

• h(n) = estimated cost (or distance) of
minimal cost path from n to a goal state.

• Based on domain-specific information and
computable from current state description
that estimates how close we are to a goal

Heuristics
• All domain knowledge used in search is encoded

in the heuristic function, h(<node>)

• Examples:
–8-puzzle: number of tiles out of place
–8-puzzle: sum of distances each tile is from its goal
–Missionaries & Cannibals: # people on starting river

bank

• In general
– ℎ 𝑛 ≥ 0 for all nodes n
– ℎ(𝑛) = 0 implies that n is a goal node
– ℎ 𝑛 = ∞ implies n is a dead-end that can’t lead to

goal

Example 3.13

(Partial) Heuristic ℎ(𝑛)
for goal r123

Example 3.13

Heuristic ℎ(𝑛) for goal
r123

Example 3.13

Heuristic ℎ(𝑛) for goal
r123

Q: Is this an admissible
heuristic?

Example 3.13

Heuristic ℎ(𝑛) for goal
r123

Q: Is this an admissible
heuristic?

Q: Is it an accurate
heuristic?

Heuristics for 8-puzzle

The number of

misplaced tiles

(not including

the blank)

1 2 3

4 5 6

7 8

1 2 3

4 5 6

7 8

In this case, only “8” is misplaced, so heuristic

function evaluates to 1

In other words, the heuristic says that it thinks a

solution may be available in just 1 more move

Goal

State

Current

State

1 2 3

4 5 6

7 8

1 2 3

4 5 6

7 8

N N N

N N N

N Y

Heuristics for 8-puzzle

Manhattan

Distance (not

including the

blank)

• The 3, 8 and 1 tiles are misplaced (by 2, 3,

and 3 steps) so the heuristic function

evaluates to 8

• Heuristic says that it thinks a solution may

be available in just 8 more moves.

• The misplaced heuristic’s value is 3

3 2 8

4 5 6

7 1

1 2 3

4 5 6

7 8

Goal

State

Current

State

3 3

8

8

1

1

2 spaces

3 spaces

3 spaces

Total 8

5

6 4

3

4 2

1 3 3

0 2

We can use heuristics

to guide search

Manhattan Distance

heuristic helps us

quickly find a

solution to the 8-

puzzle

h(n)

1 2 3

4 5

7 8 6

1 2 3

4 5

7 8 6

1 3

4 2 5

7 8 6

1 2

4 5 3

7 8 6

1 2 3

4 5 6

7 8

1 2 3

4 5

7 8 6

1 2 3

4 8 5

7 6

1 2 3

4 8 5

7 6

1 2 3

4 8 5

7 6

1 2

4 8 3

7 6 5

1 2 3

4 8

7 6 5

goal

Best-first search

• Search algorithm that improves depth-
first search by expanding most promising
node chosen according to heuristic rule

• Order nodes on nodes list by increasing
value of an evaluation function, f(n),
incorporating domain-specific information

http://en.wikipedia.org/wiki/Best_first_search

Best-first search

• Search algorithm that improves depth-
first search by expanding most promising
node chosen according to heuristic rule

• Order nodes on nodes list by increasing
value of an evaluation function, f(n),
incorporating domain-specific information

• This is a generic way of referring to the
class of informed methods

http://en.wikipedia.org/wiki/Best_first_search

Greedy best first search
• A greedy algorithm makes locally optimal choices in hope of

finding a global optimum

• Uses evaluation function f(n) = h(n), sorting nodes by
increasing values of f

• Selects node to expand appearing closest to goal (i.e., node
with smallest f value)

• Not complete

• Not admissible, as in example
– Assume arc costs = 1, greedy search finds goal g, with solution cost

of 5

–Optimal solution is path to goal with cost 3

https://en.wikipedia.org/wiki/Greedy_algorithm
https://en.wikipedia.org/wiki/Admissible_decision_rule

Greedy best first search example

• Proof of non-admissibility
– Assume arc costs = 1, greedy

search finds goal g, with
solution cost of 5

– Optimal solution is path to
goal with cost 3

a

hb

c

d

e

g

i

g2

h=2

h=1

h=1

h=1

h=0

h=4

h=1

h=0

Beam search
• Use evaluation function f(n), but maximum size

of the nodes list is k, a fixed constant

• Only keep k best nodes as candidates for
expansion, discard rest

• k is the beam width

• More space efficient than greedy search, but
may discard nodes on a solution path

• As k increases, approaches best first search

• Complete?

• Admissible?

http://en.wikipedia.org/wiki/Beam_search

Beam search
• Use evaluation function f(n), but maximum size

of the nodes list is k, a fixed constant

• Only keep k best nodes as candidates for
expansion, discard rest

• k is the beam width

• More space efficient than greedy search, but
may discard nodes on a solution path

• As k increases, approaches best first search

• Not complete

• Not admissible

http://en.wikipedia.org/wiki/Beam_search

We’ve got to be able to do
better, right?

Let’s think about car trips…

A* Search

Use an evaluation function

f(n) = g(n) + h(n)

minimal-cost path from
the start state to state n

cost estimate from state n
to the goal

estimated total cost from
start to goal via state n

A* Search

•Use an evaluation function

f(n) = g(n) + h(n)

•g(n) term adds “breadth-first” component to evaluation
function

•Ranks nodes on search frontier by estimated cost of solution
from start node via given node to goal

•Not complete if h(n) can = ∞

• Is it admissible?

minimal-cost path from
the start state to state n

cost estimate from state n
to the goal

estimated total cost from
start to goal via state n

A*

• Pronounced “a star”

• h is admissible when h(n) <= h*(n) holds

–h*(n) = true cost of minimal cost path from n to a goal

• Using an admissible heuristic guarantees that 1st
solution found will be an optimal one

• A* is complete whenever branching factor is finite
and every action has fixed, positive cost

• A* is admissible

Hart, P. E.; Nilsson, N. J.; Raphael, B. (1968). "A Formal Basis for the Heuristic Determination of

Minimum Cost Paths". IEEE Transactions on Systems Science and Cybernetics SSC4 4 (2): 100–107.

http://en.wikipedia.org/wiki/Institute_of_Electrical_and_Electronics_Engineers

Implementing A*

Q: Can this be an
instance of our
general search

algorithm?

Figure
3.3

Implementing A*

Q: Can this be an
instance of our
general search

algorithm?

Figure
3.3

A: Yup! Just make the
fringe a priority

queue ordered by
𝑓(𝑛)

Alternative A* Pseudo-code
1 Put the start node S on the nodes list, called OPEN

2 If OPEN is empty, exit with failure

3 Select node in OPEN with minimal f(n) and place on CLOSED

4 If n is a goal node, collect path back to start and stop

5 Expand n, generating all its successors and attach to them
pointers back to n. For each successor n' of n

1 If n’ not already on OPEN or CLOSED

• put n' on OPEN

• compute h(n'), g(n')=g(n)+ c(n,n'), f(n')=g(n')+h(n')

2 If n’ already on OPEN or CLOSED and if g(n') is lower for new
version of n', then:

• Redirect pointers backward from n’ on path with lower g(n’)

• Put n' on OPEN

Observations on A*
• Perfect heuristic: If h(n) = h*(n) for all n, only nodes on an

optimal solution path expanded; no extra work is done

Observations on A*
• Perfect heuristic: If h(n) = h*(n) for all n, only nodes on an

optimal solution path expanded; no extra work is done

• Null heuristic: If h(n) = 0 for all n, then it is an admissible
heuristic and A* acts like uniform-cost search

Observations on A*
• Perfect heuristic: If h(n) = h*(n) for all n, only nodes on an

optimal solution path expanded; no extra work is done

• Null heuristic: If h(n) = 0 for all n, then it is an admissible
heuristic and A* acts like uniform-cost search

• Better heuristic: If h1(n) < h2(n) <= h*(n) for all non-goal
nodes, then h2 is a better heuristic than h1

Observations on A*
• Perfect heuristic: If h(n) = h*(n) for all n, only nodes on an

optimal solution path expanded; no extra work is done

• Null heuristic: If h(n) = 0 for all n, then it is an admissible
heuristic and A* acts like uniform-cost search

• Better heuristic: If h1(n) < h2(n) <= h*(n) for all non-goal
nodes, then h2 is a better heuristic than h1

– If A1* uses h1, and A2* uses h2, then every node
expanded by A2* is also expanded by A1*

i.e., A1 expands at least as many nodes as A2*

–We say that A2* is better informed than A1*

Observations on A*
• Perfect heuristic: If h(n) = h*(n) for all n, only nodes on an

optimal solution path expanded; no extra work is done

• Null heuristic: If h(n) = 0 for all n, then it is an admissible
heuristic and A* acts like uniform-cost search

• Better heuristic: If h1(n) < h2(n) <= h*(n) for all non-goal
nodes, then h2 is a better heuristic than h1

– If A1* uses h1, and A2* uses h2, then every node
expanded by A2* is also expanded by A1*

i.e., A1 expands at least as many nodes as A2*

–We say that A2* is better informed than A1*

• The closer h to h*, the fewer extra nodes expanded

Example search space

S

CBA

D GE

Example search space

S

CBA

D GE

start state

goal state

Example search space

S

CBA

D GE

start state

1 5 8

9
4 5

3
7

arc cost

goal state

Example search space

S

CBA

D GE

start state

1 5 8

9
4 5

3
7

arc cost

goal state

0

1 85

4 8 9

g value (current)

Example search space

S

CBA

D GE

1 5 8

9
4 5

3
7

8

8
4 3

 0

start state

goal state

arc cost

h value

0

1

4 8 9

85

g value (current)

Example search space

S

CBA

D GE

1 5 8

9
4 5

3
7

8

8
4 3

 0

start state

goal state

arc cost

h value

parent pointer

(current)
0

1

4 8 9

85

g value (current)

Example

n g(n) h(n) f(n) h*(n)

S 0 8 8 9

• h*(n) is (hypothetical) perfect heuristic (an oracle)

• Since h(n) <= h*(n) for all n, h is admissible (optimal)

• Optimal path = S B G with cost 9

S

CBA

D GE

1 5
8

9
4

5

3

7

8

8
4 3

 0

0

1

4 8 9

85

Example

n g(n) h(n) f(n) h*(n)
S 0 8 8 9

A 1 8 9 9

B 5 4 9 4

C 8 3 11 5

D 4 inf inf inf

E 8 inf inf inf

G 9 0 9 0

• h*(n) is (hypothetical) perfect heuristic (an oracle)

• Since h(n) <= h*(n) for all n, h is admissible (optimal)

• Optimal path = S B G with cost 9

S

CBA

D GE

1 5
8

9
4

5

3

7

8

8
4 3

 0

0

1

4 8 9

85

Greedy search

f(n) = h(n)

node expanded nodes list

{ S(8) }

what’s next???

S

CBA

D GE

1 5
8

9
4

5

3

7

8

8
4 3

 0

0

1

4 8 9

85

Greedy search

f(n) = h(n)

node expanded nodes list

{ S(8) }

S { C(3) B(4) A(8) }

C { G(0) B(4) A(8) }

G { B(4) A(8) }

• Solution path found is S C G, 3 nodes expanded.

• See how fast the search is!! But it is NOT optimal.

S

CBA

D GE

1 5
8

9
4

5

3

7

8

8
4 3

 0

0

1

4 8 9

85

A* search
f(n) = g(n) + h(n)

node exp. nodes list

{ S(8) }

What’s next?

S

CBA

D GE

1 5
8

9
4

5

3

7

8

8
4 3

 0

0

1

4 8 9

85

A* search
f(n) = g(n) + h(n)

node exp. nodes list

{ S(8) }

S { A(9) B(9) C(11) }

What’s next?

S

CBA

D GE

1 5
8

9
4

5

3

7

8

8
4 3

 0

0

1

4 8 9

85

A* search
f(n) = g(n) + h(n)

node exp. nodes list

{ S(8) }

S { A(9) B(9) C(11) }

A { B(9) G(10) C(11) D(inf) E(inf) }

What’s next?

S

CBA

D GE

1 5
8

9
4

5

3

7

8

8
4 3

 0

0

1

4 8 9

85

A* search
f(n) = g(n) + h(n)

node exp. nodes list

{ S(8) }

S { A(9) B(9) C(11) }

A { B(9) G(10) C(11) D(inf) E(inf) }

B { G(9) G(10) C(11) D(inf) E(inf) }

What’s next?

S

CBA

D GE

1 5
8

9
4

5

3

7

8

8
4 3

 0

0

1

4 8 9

85

A* search
f(n) = g(n) + h(n)

node exp. nodes list

{ S(8) }

S { A(9) B(9) C(11) }

A { B(9) G(10) C(11) D(inf) E(inf) }

B { G(9) G(10) C(11) D(inf) E(inf) }

G { C(11) D(inf) E(inf) }

• Solution path found is S B G, 4 nodes expanded..
• Still pretty fast. And optimal, too.

S

CBA

D GE

1 5
8

9
4

5

3

7

8

8
4 3

 0

0

1

4 8 9

85

Proof of the optimality of A*
• Assume that A* has selected G2, a goal state

with a suboptimal solution, i.e., g(G2) > f*

• Proof by contradiction shows it’s impossible

Proof of the optimality of A*
• Assume that A* has selected G2, a goal state

with a suboptimal solution, i.e., g(G2) > f*

• Proof by contradiction shows it’s impossible
–Choose a node n on an optimal path to G

–Because h(n) is admissible, f* >= f(n)

– If we choose G2 instead of n for expansion, then
f(n) >= f(G2)

–This implies f* >= f(G2)

–G2 is a goal state: h(G2) = 0, f(G2) = g(G2).

–Therefore f* >= g(G2)

–Contradiction

Dealing with hard problems
• For large problems, A* may require too much

space

• Variations conserve memory: IDA* and SMA*

• IDA*, iterative deepening A*, uses successive
iteration with growing limits on f, e.g.

– A* but don’t consider a node n where f(n) >10

– A* but don’t consider a node n where f(n) >20

– A* but don’t consider a node n where f(n) >30, ...

• SMA* -- Simplified Memory-Bounded A*

– Uses queue of restricted size to limit memory use

IDA*: iterative deepening A*

Use successive iteration with growing limits on f, e.g.

– A* but don’t consider a node n where f(n) >10

– A* but don’t consider a node n where f(n) >20

– A* but don’t consider a node n where f(n) >30, ...

SMA*: Simplified Memory-Bounded A*

Uses queue of restricted size to limit memory use

How to find good heuristics
Some options (mix-and-match):

• If h1(n) < h2(n) <= h*(n) for all n, h2 is better than
(dominates) h1

• Relaxing problem: remove constraints for easier
problem; use its solution cost as heuristic function

• Max of two admissible heuristics is a Combining
heuristics: admissible heuristic, and it’s better!

• Use statistical estimates to compute h; may lose
admissibility

• Identify good features, then use machine learning to
find heuristic function; also may lose admissibility

Pruning:
Dealing with Large Search Spaces

Cycle pruning

Don’t add a node to the fringe
if you’ve already expanded it
(it’s already on a path you’ve
considered/are considering)

Q: What type of search-space
would this be approach be

applicable for?

Multiple-path pruning

Pruning:
Dealing with Large Search Spaces

Cycle pruning

Don’t add a node to the fringe
if you’ve already expanded it
(it’s already on a path you’ve
considered/are considering)

Q: What type of search-space
would this be approach be

applicable for?

Multiple-path pruning

Core idea: there may be
multiple possible solutions,

but you only need one

Maintain an “explored”
(sometimes called “closed”)
set of nodes at the ends of

paths; discard a path if a path
node appears in this set

Q: Does this return an optimal
solution?

Optimality with Multiple-Path Pruning

Some options to find the optimal solution
(pulled from Ch 3.7.2)

• Make sure that the first path found to any
node is a lowest-cost path to that node, then
prune all subsequent paths found to that
node. OR

Optimality with Multiple-Path Pruning

Some options to find the optimal solution (pulled
from Ch 3.7.2)

• Make sure that the first path found to any node is
a lowest-cost path to that node, then prune all
subsequent paths found to that node. OR

• If the search algorithm finds a lower-cost path to
a node than one already found, it could remove
all paths that used the higher-cost path to the
node. OR

Optimality with Multiple-Path Pruning

Some options to find the optimal solution (pulled from Ch
3.7.2)
• Make sure that the first path found to any node is a lowest-

cost path to that node, then prune all subsequent paths
found to that node. OR

• If the search algorithm finds a lower-cost path to a node
than one already found, it could remove all paths that used
the higher-cost path to the node. OR

• Whenever the search finds a lower-cost path to a node
than a path to that node already found, it could incorporate
a new initial section on the paths that have extended the
initial path.

A* and Multiple-Path Pruning

If ℎ 𝑛 is consistent, A* with multiple-path
pruning will find an optimal solution

Core Idea: Why?

A* and Multiple-Path Pruning

If ℎ 𝑛 is consistent, A* with multiple-path
pruning will find an optimal solution

Core Idea: Why? (proof by contradiction: see
Proposition 3.2 in Ch 3.7.2)

Summary: Informed search

•Best-first search is general search where minimum-cost
nodes (w.r.t. some measure) are expanded first

•Greedy search uses minimal estimated cost h(n) to goal
state as measure; reduces search time, but is neither
complete nor optimal

•A* search combines uniform-cost search & greedy
search: f(n) = g(n) + h(n). Handles state repetitions &
h(n) never overestimates

–A* is complete & optimal, but space complexity high

–Time complexity depends on quality of heuristic function

–IDA* and SMA* reduce the memory requirements of A*

Summary (Fig 3.11)

