
Classic Blocks
World

Classic Blocks World

• We’ll look at the classic blocks world domain
• Starting with

– BW: a domain file
– Several problem files

• We’ll use planning.domains to demonstrate
solving the problems

• And then show simple extensions to the domain
by adding predicates and constants

http://planning.domains/

bw.pddl 1
(define (domain BW)

(:requirements :strips)

(:predicates
(on ?x ?y) ; object ?x is on ?object ?y
(on-table ?x) ; ?x is directly on the table
(clear ?x) ; ?x has nothing on it
(arm-empty) ; robot isn't holding anything
(holding ?x)) ; robot is holding ?x

;; the four classic actions for manipulating objects
… actions in next four slides …

Allows basic add and
delete effects in actions

List all the predicates with
their arguments

bw.pddl 2
(:action pick-up

:parameters (?ob1)

:precondition
(and (clear ?ob1)

(on-table ?ob1)
(arm-empty))

:effect
(and (not (on-table ?ob1))

(not (clear ?ob1))
(not (arm-empty))
(holding ?ob1)))

Variable for the argument
of a pick-up action

These three statements
must be True before we
can do a pick-up action

After doing a pick-up
action, these become
True

bw.pddl 3
(:action pick-up

:parameters (?ob1)

:precondition
(and (clear ?ob1)

(on-table ?ob1)
(arm-empty))

:effect
(and (not (on-table ?ob1))

(not (clear ?ob1))
(not (arm-empty))
(holding ?ob1)))

Variable for the argument
of a pick-up action

These three statements
must be True before we
can do a pick-up action

After doing a pick-up
action, these become
True

bw.pddl 4(:action put-down
:parameters (?ob)
:precondition (holding ?ob)
:effect

(and (not (holding ?ob))
(clear ?ob)
(arm-empty)
(on-table ?ob)))

(:action stack
:parameters (?ob ?underob)
:precondition (and (holding ?ob) (clear ?underob))
:effect

(and (not (holding ?ob))
(not (clear ?underob))
(clear ?ob)
(arm-empty)
(on ?sob ?underob)))

put-down means put the
think you are holding on
the table

stack means put the
thing you are holding on
another object

bw.pddl 5
(:action unstack

:parameters (?sob ?sunderob)
:precondition

(and (on ?sob ?sunderob)
(clear ?sob)
(arm-empty))

:effect
(and (holding ?sob)

(clear ?sunderob)
(not (clear ?sob))
(not (arm-empty))
(not (on ?sob ?sunderob)))

) ; this closes the domain definition

First arg can’t have
anything on it and the
robt cannot be holding
anything

unstack means take the
first arg off the second
arg

Here are the updates
to our knowledge base
describing the state of
the world

p00.pddl

;; The arm is empty and there is a stack of three blocks: C is on B which is on A
;; which is on the table. The goal is to reverse the stack, i.e., have A on B and B
;; on C. No need to mention C is on the table, since domain constraints will enforce it.

(define (problem 00)
(:domain bw)
(:objects A B C)
(:init (arm-empty)

(on-table A)
(on B A)
(on C B)
(clear C))

(:goal (and (on A B)
(on B C))))

A

C

B

C

A

B

http://planning.domains/

Open the PDDL editor,
upload our domain and
problem files, and run
the solver.

Online Demonstration

We’ll try an online demonstration, using planning.domains
and the files in the planning subdirectory of our 471 code
repository

• bw.pddl
• p01.pddl
• p02.pddl
• p03.pddl
• p12.pddl
• p36.pddl

http://planning.domains/
https://github.com/CMSC-471-02-S2020/471-code

Fin
11

