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Classification

Classification: provide /labels to an input item
Labels are application/task dependent

Machine learning classification: Learn a function p, to provide these
labels automatically



Classification

Classification: provide /labels to an input item
Labels are application/task dependent

Machine learning classification: Learn a function p, to provide these
labels automatically

We assume there are some

“weights” (parameters) that
control the behavior of p,.




Classification

Classification: provide labels to an input item
Labels are application/task dependent

Machine learning classification: Learn a function p, to provide these
labels automatically

Possible output labels:

TECH
NOT TECH




Classification vs. Structured Prediction

“Flat” prediction
y is a single label

Y =P

Examples:
* Document classification

Label a doc with its “topic”

* Image classification

E.g., identify the (main) item in
an image

e Robot action prediction

Determine what action a robot
should take



Classification vs. Structured Prediction

“Flat” prediction Examples:
. . * Document classification
y is a single label * Label a doc with its “topic”

* Image classification
* E.g., identify the (main) item in
an image
e Robot action prediction
* Determine what action a robot
should take

Y =P

Examples:
Structured prediction «  Part of speech tagging
* |dentify each word
in a sentence as a
noun, verb, etc.
* Action identification in
video

y has some internal structure to predict

(yll y21"'ly|\/|) = pa (




Example: Part-of-Speech Sequence Tagging

(i): Adjective Noun Verb = Prep Noun Noun

D) D)) )

p(British Left Waffles on Falkland Islands)



Example: Part-of-Speech Sequence Tagging

(i): Adjective Noun Verb = Prep Noun Noun

(ii): Nob» Va} Noué Prep> Nobf Noun

p(British Left Waffles on Falkland Islands)




Example: Handwriting Recognition
Data: D = {z™ ¢V

OOOO®OOOLOO® I»

ANEEECEEGEE |-
@@@QQ

} y@




Example: Machine
Translation/Word Alignment

Le chat est sur la chaise.

A A t 1t t U
\ \ 1 |
\ \ 1 |

i

Tiwe c‘at i's o'n the ¢ '

at est sur la chaise.

p(English|French) « p(French|English) x p(English)

11



Example: Word Alignment, Phrase Extraction

bofetada bruja
Maria no daba una a la T verde

... 5 farmers were thrown into jail in Ireland ...

Mary \ i T R VN - - "
d'd ’// \\ \\\ \\/I/,, ,’//
* ... funf Landwirte = festgenommen , well ...
not ... oder wurden festgenommen , gefoltert ...
/II //A\\ : || ‘\
... or have been imprisoned , tortured...
green
witch
1 2 3 4
klein ist das Haus
1
? 5] the house is small
< fﬁ 1 2 3 4
4 I:I:l
1 2 4 5
In the past two years




Example: Object Recognition

Data consists of images X and labels y.

13



Example: Object Recognition

Data consists of images X and labels y.

Preprocess data into
“patches”
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Example: Object Recognition

Data consists of images X and labels y.

Preprocess data into
“patches” T

Posit a latent labeling z
describing the object’s
parts (e.g. head, leg, tail,
torso, grass)
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Example: Object Recognition

Data consists of images X and labels y.

Preprocess data into
“patches”

Posit a latent labeling z
describing the object’s
parts (e.g. head, leg, tail,
torso, grass)

Define a “GRAPHICAL
MODEL” with these latent
variables in mind

Z is not observed at train
or test time

16



Example: Sentence Parsing

Baltimore is a

. | >
great Clty
Baltimore is a great city
Sentence Structured analysis

(parse) of the sentence
(diagramming a sentence)
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Abstract. The stack decoder is an attractive algorithm for con- trolling the acoustic and language model matching in a continuous speech recognizer.
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An Efficient A* Search Algorithm for Statistical Machine Translation

Franz Josef Och, Nicola Ueffing, Hermann Ney

Lehrstuhl fiir Informatik VI, Computer Science Department
RWTH Aachen - University of Technology
D-52056 Aachen, Germany

{och,ueffing,ney}@informatik.rwth-aachen.de

Abstract

In this paper, we describe an efficient
A* search algorithm for statistical ma-
chine translation. In contrary to beam-
search or greedy approaches it is possi-
ble to guarantee the avoidance of search
errors with A*. We develop various so-
phisticated admissible and almost ad-
missible heuristic functions. Especially
our newly developped method to per-
form a multi-pass A¥* search with an
iteratively improved heuristic function
allows us to translate even long sen-
tences. We compare the A* search al-
gorithm with a beam-search approach
on the Hansards task.

1 Introduction

The goal of machine translation is the transla-
tion of a text given in some source language into
a target language. We are given a source string
fl" = f1...fj...f1. which is to be translated into a
target string e] = eq...e;...¢;. Among all possible
target strings, we will choose the string with the
highest probability:

d = &rguﬁx{Pr{er{}l}

try to model word-to-word correspondences be-
tween source and target words. These correspon-
dences are called an alignment. The model is
often further restricted in a way such that each
source word 1s assigned exacily one target word.

The alignment mapping is j — ¢ = a; from
source position j to target position ¢ = a;. The
alignment uf may contain alignments a; = 0

with the “empty’ word e to account for source
words that are not aligned to any target word. In
(statistical) alignment models Pr( f{, af|e]). the
alignment rr'l" is introduced as a hidden variable.

Typically, the search is performed using the so-
called maximum approximation:

é arg max Pr(el). Z Pr(f{, aflel)
€1 ad
1

argmax {Pr'{r—."{:l S Pf'(fij__ ajlel) }
£ b 1
The search space consists of the set of all possible

target language strings ¢] and all possible align-

ments aj.

2 IBM Model 4

Various statistical alignment models of the form
Pr(f{,af|el) have been introduced in (Brown
et al., 1993; Vogel et al., 1996: Och and Ney,

Core idea: searching for the correct
translation

State: the current partial translation
Actions: translating the next word

20



An Efficient A* Search Algorithm for Statistical Machine Translation

Franz Josef Och, Nicola Ueffing, Hermann Ney

Lehrstuhl fiir Informatik VI, Computer Science Department
RWTH Aachen - University of Technology
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Abstract

In this paper, we describe an efficient
A% search algorithm for statistical ma-
chine translation. In contrary to beam-
search or greedy approaches it is possi-
ble to guarantee the avoidance of search
errors with A*. We develop various so-
phisticated admissible and almost ad-
missible heuristic functions. Especially
our newly developped method to per-
form a multi-pass A¥* search with an
iteratively improved heuristic function
allows us to translate even long sen-
tences. We compare the A* search al-
gorithm with a beam-search approach
on the Hansards task.

1 Introduction

The goal of machine translation is the transla-
tion of a text given in some source language into
a target language. We are given a source string
fl" = f1...fj...f1. which is to be translated into a
target string e] = eq...e;...¢;. Among all possible
target strings, we will choose the string with the
highest probability:

n’; = }ll'g,m}}x{Pr'{f."“ff}}

try to model word-to-word correspondences be-
tween source and target words. These correspon-
dences are called an alignment. The model is
often further restricted in a way such that each
source word 1s assigned exacily one target word.

The alignment mapping is j — ¢ = a; from
source position j to target position ¢ = a;. The
alignment uf may contain alignments a; = 0

with the “empty’ word e to account for source
words that are not aligned to any target word. In
(statistical) alignment models Pr(f{ . af|e]), the
alignment rr'l" is introduced as a hidden variable.

Typically, the search is performed using the so-
called maximum approximation:

é = arg max Pr(el). Z Pr(f{, aflel)
“1 J

ay

= argmax {Pr'{fri) S Pr(f't’l_ ay |ed ]}
el a
The search space consists of the set of all possible
target language strings ¢] and all possible align-
ments aj.

2 IBM Model 4

Various statistical alignment models of the form
Pr(f{,af|el) have been introduced in (Brown
et al., 1993; Vogel et al., 1996: Och and Ney,

Core idea: searching for the correct
translation

State: the current partial translation
Actions: translating the next word

Cool part: an admissible heuristic!

“heuristic function including a
coupling between translation,
fertility, and language model
probabilities [scores]”

How do they show it? By using
knowledge about how their
particular approach computes
these scores.
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1 Introduction

This extended abstract describes work reported in the Jour-
nal of Web Semantics (Padia et al. 2019).

Axiom based inference provides a clear and consistent
way of reasoning to add more information to a knowledge
graph. However, constructing a set of axioms is expensive
and requires domain expertise, time, and money. It is also
difficult to reuse or adapt a set of axioms to a knowledge
graph in a new domain or even in the same domain but us-
ing a slightly different representation approach.

Representation learning (Bengio, Courville, and Vincent
2013) introduces a way to augment or even replace manually
constructed ontology axioms and rules by using knowledge
graph instances to discover common patterns and then ap-
ply them to suggest changes to the graph. The changes are
often in the form of adding missing types and relations, but
can also include schema modifications, removing incoher-
ent instances, merging sets of instances describing the same
real-world entity, or adding relation probabilities.

One popular approach for representation leaming is based
on learning how to embed a graph’s entities and relations
into a real-valued vector space, allowing both to be repre-
sented by dense, real-valued vectors. The entity and relation
embeddings can be leamned either independently or jointly,
and then used to predict additional relations that are missing.
Jointly learning the embeddings allows each to enhance the
other (Nickel, Tresp, and Kriegel 2011).

There are several models that leam embedding of enti-
ties and relations to perform inference. Some use existing
schemas (Krompass, Baier, and Tresp 2015) to regularize
the quality of the embedding. These often give better per-
formance compared to those that do not use schemas, as in
Nickel (2011). However, schema-based embedding methods
suffer from the above-mentioned limitations. We have de-
veloped a family of novel methods that improves the quality
of the embeddings without using pre-defined schemas (Pa-
dia et al. 2019; Padia 2019a).

We divide statiztical models that infer additional know]-

prediction or classification systems that determine if a new
fact holds or not. There are several approaches to link rank-
ing {Socher et al. 2013), all of which involve an auxiliary
problem of determining a threshold, either globally or per
relation, that separates plausible from implausible relations.
Since we are only interested in extending a knowledge graph
with relations that are likely to hold (what we call facts), we
designed an approach to solve it directly. Thus we have the
fact or link prediction task: given a knowledge graph, learn a
madel that can classify relation instances that are very likely
to hold. This task is more specific than link ranking and
more directly solves an important problem.

We improve the quality of the relation and entities repre-
sentations using data-driven constraints, hence our approach
can be used when ontological axioms are not available or
are expensive to create. We measured the quality of the
learned embeddings by comparing our approaches with pre-
vious non-schema based methods as well as with neural
models and found improvement ranging from 5% to 509%.
We demonstrated its broad applicability using eight real-
world data sets covering human language, medical data, and
general world knowledge that are available online (Padia
2019b). This work makes three main contributions: it (1)
provides a family of representation learning algorithms and
an extensive analysis on eight datasets; (2) yields better re-
sults than existing tensor and neural models; and (3) includes
a provably convergent factorization algorithm.

We use the initial knowledge graph to pre-compute a sim-
ilarity matrix " for the relations that will help constrain
the learning of embeddings. To better understand the idea,
consider the WordNet knowledge graph where entities are
words that are connected with relations like foypernym and
similar. The graph has no schema and there are many miss-
ing relations. We create a similarity matrix quantifying the
similarity between two relations as the number of overlap-
ping words. The cells in Figure | show the number of sub-
jects or objects that are shared by the relations, with darker
cells indicating a smaller overlap.

... and local
chances to

get
involved

(this combines neural
networks, propositional
logic-based knowledge

bases, and structured

prediction)
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Linear Programming

AW < B

. <
input data awy + a;w, +raywy < b

max W x subject to linear constraints on W
b
matrix (or vector) of
learned parameters



Example: The diet problem

A student wants to spend as little money on
food while getting sufficient amount of vitamin
Z and nutrient X. Her options are:

Item Cost/100g Vitamin Z Nutrient X
Carrots 2 4 0.4
Sunflower seeds 6 10 4
Double cheeseburger 0.3 0.01 2

How should she spend her money to get at least 5
units of vitamin Z and 3 units of nutrient X?

Let ¢, s and d denote how much of each item is purchased

Minimize total cost

such that
At least 5 units of vitamin Z,

At least 3 units of nutrient X,

The number of units purchased is not negative

27



Example: The diet problem

A student wants to spend as little money on
food while getting sufficient amount of vitamin
Z and nutrient X. Her options are:

Item Cost/100g Vitamin Z Nutrient X
Carrots 2 4 0.4
Sunflower seeds 6 10 4
Double cheeseburger 0.3 0.01 2

How should she spend her money to get at least 5
units of vitamin Z and 3 units of nutrient X?

Let ¢, s and d denote how much of each item is purchased

min 2c¢+ 6s + 0.3d Minimize total cost

such that
At least 5 units of vitamin Z,

At least 3 units of nutrient X,

The number of units purchased is not negative
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Example: The diet problem

A student wants to spend as little money on
food while getting sufficient amount of vitamin
Z and nutrient X. Her options are:

Item Cost/100g Vitamin Z Nutrient X
Carrots 2 4 0.4
Sunflower seeds 6 10 4
Double cheeseburger 0.3 0.01 2

How should she spend her money to get at least 5
units of vitamin Z and 3 units of nutrient X?

Let ¢, s and d denote how much of each item is purchased

min 2c¢+ 6s + 0.3d Minimize total cost

such that
4c 4+ 10s +0.01d > 5 At least 5 units of vitamin Z,

At least 3 units of nutrient X,

The number of units purchased is not negative



Example: The diet problem

A student wants to spend as little money on
food while getting sufficient amount of vitamin
Z and nutrient X. Her options are:

Item Cost/100g Vitamin Z Nutrient X
Carrots 2 4 0.4
Sunflower seeds 6 10 4
Double cheeseburger 0.3 0.01 2

How should she spend her money to get at least 5
units of vitamin Z and 3 units of nutrient X?

Let ¢, s and d denote how much of each item is purchased

min 2c¢+ 6s + 0.3d Minimize total cost
such that
4c 4+ 10s +0.01d > 5 At least 5 units of vitamin Z,
0dec+4s+2d > 3 At least 3 units of nutrient X,

The number of units purchased is not negative



Example: The diet problem

A student wants to spend as little money on
food while getting sufficient amount of vitamin
Z and nutrient X. Her options are:

Item Cost/100g Vitamin Z Nutrient X
Carrots 2 4 0.4
Sunflower seeds 6 10 4
Double cheeseburger 0.3 0.01 2

How should she spend her money to get at least 5
units of vitamin Z and 3 units of nutrient X?

Let ¢, s and d denote how much of each item is purchased

min 2c¢ + 6s + 0.3d Minimize total cost
such that
4c 4+ 10s +0.01d > 5 At least 5 units of vitamin Z,
0dec+4s+2d > 3 At least 3 units of nutrient X,
c>0,5s>0,d=>0. The number of units

purchased is not negative 31



Geometric Views of the Constraints

The constraint matrix defines

a polytope that contains
allowed solutions (possibly

not closed) the space

The objective defines
cost for every point in

max CTX

subject to Ax <b
x > 0.

Even though all points in
the region are allowed,
points on the faces
maximize/minimize the cost

Every constraint forbids
a half-plane
The points that are
allowed form the
feasible region

32




Integer Linear Programming

Variables
to assign

. l . 1. linear constraints on z
max ¢’ z subject to 2. Each zj, is an integer

=
c: a matrix (or vector)
of learned parameters



Integer Linear Programming

Az < B
Variab_les alzl + azzz + - aMZM S b
to assign
l 1. linear constraints on z

max c! z subject to
=
c: a matrix (or vector)
of learned parameters

2. Each z;, is an integer



Integer Programming

Az < B

Variables ai1zq + aA,Z~H + .- ApZpy < b

to assign

max c! 7 subject to
=
c: a matrix (or vector)
of learned parameters

2. Each z;, is an integer



Programming

Az < B

Variables ai1zq + aA,Z~H + .- ApZpy < b

to assign

|

max c! 7 subject to

=
c: a matrix (or vector)
of learned parameters



Programming

Az < B

Variables ai1zq + aA,Z~H + .- ApZpy < b

to assign

max c! 7 subject to
=
c: a matrix (or vector)

of learned parameters ILP is NP—compIete ®




Linear Programming

Az < B
Varlab_les a121 + a222 + - aMZM S b
to assign
l 1. linear constraints on z

max c! z subject to
e
c: a matrix (or vector)

of learned parameters ILP is NP—compIete D)

But there are still well-designed

solvers =2 it’s useful
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Also Cool: Extend ILP to IQP
Quadratic Programming

(with Linear constraints)
AW < B

awy + a;wy, +-aywy < b

- . 1. linear constraints on W
max, zc" z subject to

/

Quadratic term of Depending on c, IQP can be easy
our variables z or hard (NP-hard) ®

But there are still well-designed

solvers =2 it’s useful

39



So, how do we solve ILPs and IQPs?

* Fundamentally, they’re a type of constraint
(and search!) problem

* “Branch and bound” is a very common
technique (Poole & Mackworth, Ch 3.8.1)
— DFS, but keep the cost of the best solution found

— Prune a path if its current cost + heuristic cost are
worse than the cost of the best solution found

* Think of this as path pruning (from search) +
domain splitting (from CSPs)



CVXPY

C)star 3,198

Navigation

Install
Tutorial
Examples

API Documentation

FAQ
Citing CVXPY
Contributing

Related Projects

Changes to CVXPY

CVXPY Short Course

License

Quick search

https://www.cvxpy.org/examples/basic/mixed_integer_quadratic_program.htm!

Mixed-integer quadratic program
A mixed-integer quadratic program (MIQP) is an optimization problem of the form

minimize zTQz +qTz+r
subjectto zeC
red",

where x € Z" is the optimization variable (Z" is the set of n-dimensional vectors with
integer-valued components), @ € S} (the set of n x n symmetric positive semidefinite
matrices), ¢ € R", and 7 € R are problem data, and C is some convex set.

An example of an MIQP is mixed-integer least squares, which has the form

minimize | Az — b|3
subject to = € Z",

where & € Z" is the optimization variable, and A € R™"*" and b € R™ are the
problem data. A solution &* of this problem will be a vector in Z" that minimizes

| Az — b|3.

Example

In the following code, we solve a mixed-integer least-squares problem with CVXPY.

import cvxpy as cp
import numpy as np

# Generate a random problem
np.random.seed(@)
m, n= 48, 25

A
b

np.random.rand(m, n)
np.random.randn{m)
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Example: Sequence Tag Prediction as an

QP

Adjective Noun Verb Prep

British Left Waffles on

Goal: Find the
sequence of POS
[part of speech] tags
that maximize our
score (given by
previously learned
weights)



Example: Sequence Tag Prediction as an

IQP

Adjective Noun Verb Prep
British Left Waffles on
Goal: Find the
sequence of POS Put another way: We need to
[part of speech] tags of each word’s POS that
that maximize our maximize the score, subject to sequence
score (given by constraints

previously learned
weights)



Example: Sequence Tag Prediction as an

QP

Put another way: We need to

of each word’s POS that
maximize the score, subject to sequence
constraints

British Left Waffles on

Core ideas:

(1) Our quadratic score function f(w, z)
will depend on previously learned
weights w and the assignment to the
structured z



Example: Sequence Tag Prediction as an

QP

Put another way: We need to

of each word’s POS that
maximize the score, subject to sequence
constraints

British Left Waffles on

Core ideas:

(1) Our quadratic score function f(w, z)
will depend on previously learned
weights w and the assignment to the
structured z

(2) The assignment to z must
describe a valid sequence



Example: Sequence Tag Prediction as an

QP

1. linear constraints on z

mZaXf(W, z) subjectto 5 po Z, is an integer

Adjective Noun Verb Prep

British Left Waffles on



The Big Representational Choice

British Left Waffles on

We are going to have a z for each possible pair of
time step (word) i and POS tag k: z;

Each z; ;. will be binary: z; ;, € {0,1}
Zi = 1liff word i has tag k



Example of our Representation

Adjective Noun Verb Prep

British Left Waffles on

Z1Noun — 0 Z2 Noun — 1 Z3 Noun = 0 Z4Noun — 0

Z1Verb — 0 Z Verb — 0 Zzyerb = 1 ZgVerb — 0
Ziadj. = 1 Zypadi. =0 Z3ag. =0 Za Adj. =0

48



Example of our Representation

Constraint
1: Each
word must
have at least
one tag

Adjective

British

Z1,Noun — 0

Z1,Verb = 0
Z1,adj. = 1

Noun

Left

ZaNoun = 1 Z3Noun =0

Zyverb =0
Z2,Adj. = 0

Verb

Waffles

Z3Verb — 1
Z3 adj. = 0

Prep

on

Z4Noun — 0

ZgVerb — 0
Zgpgdj. =0

Constraint
2: Each
word must
have only
one tag



Example: Sequence Tag Prediction as an

QP

1. linear constraints on z

mzaxf(w, z) subject to .Each z, is an {0, 1} integer

for each time i
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Example: Sequence Tag Prediction as an

QP

o 1. linear constraints on z
max f (w, z) subject to 2. Each z, isan {0, 1} integer

Z
z Zi g = 1 for each time i
k

How do we
compute this How do we learn
score? (Take NLP: these weights?
CMSC 473) (We’ll cover a bit,

but take ML: CMSC
478)
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