Support Vector
Machines

Some slides borrowed from Andrew Moore’s slides on SVMs.
His repository is here: http://www.cs.cmu.edu/~awm/tutorials .



Support Vector Machines

e\Very popular ML technique
—Became popular in the late 90s (Vapnik 1995; 1998)
—Invented in the late 70s (Vapnik, 1979)

e Controls complexity and overfitting, so works
well on a wide range of practical problems

e Can handle high dimensional vector spaces,
which makes feature selection less critical

e\Very fast and memory efficient implementa-
tions, e.g., svm_light

e Not always best solution, especially for problems
with small vector spaces



http://svmlight.joachims.org/
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f > yest

f(x,w,b) = sign(w. x - b)

How would
0 you classify
o ° this data?
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Linear Classifiers Of
X > f > yest

f(x,w,b) = sign(w. x - b)

° denotes +1

denotes -1

Any of these
would be fine..

..but which is
best?
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Classifier Margin 1
X > f > yest

f(x,w,b) = sign(w. x - b)

° denotes +1
denotes -1

A linear classifier’s
" margin is width
that boundary
could be increased
° by before hitting a
datapoint
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Maximum Margin
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SVM, called an LSVM

A

Linea SVM

Copyright © 2001, 2003, Andrew W. Moore



Maximum Margin 1
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Why Maximum Margin?

° denotes +1

° denotes -1

Support Vectors
are those
datapoints that
the margin pushes
up against

LOOCV = leave one out cross validation

/

1.Intuitively this feels safest

2.Small errors in boundary location
unlikely to cause misclassification

3.LOOCV is easy since model is immune
to removal of non-support-vector
datapoints

4.There’s some theory (using VC
dimension) that is related to (but not
the same as) the proposition that this is
a good thing

5.Empirically it works very very well
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Specifying a line and margin

Plus-Plane

— Classifier Boundary

Minus-Plane

. How do we represent this mathematically?
e ...iInminput dimensions?
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Soft margin classification

e \What if data from two classes not
linearly separable?

e Allow a fat decision margin to make a few
mistakes

e Some points, outliers or noisy examples, are
inside or on wrong side of the margin

e Each outlier incurs a cost based on distance
to hyperplane



Kernel trick

e What if data from two classes not linearly
separable?

e Project data onto a higher dimensional
space where it becomes linearly separable

e Many SVMs can take an argument, a kernel,
that does the transformation of the data

e Deciding what kernel function to use is
done through experimentation



Can’t separate the blue & red points with a line

Kernel Trick example
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https://towardsdatascience.com/understanding-support-vector-machine-part-2-kernel-trick-mercers-theorem-e1e6848c6c4d

Use a different kernel

e Applying a kernel can transform data to make it more
nearly linearly separable

e E.g., use polar coordinates or map to three dimentions
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SVM Performance

SVMs can handle very large features spaces
(e.g., 100K features)

Relatively fast
Anecdotally they work very well indeed

Example: They are among the best-known
classifier on a well-studied hand-written-
character recognition benchmark




Binary vs. multi classification (1)

e SVMs can only do binary classification ®

—E.g.: can’t classify an iris into one of three species

e Two approaches to multi classification: OVA
and OVO

e OVA or one-vs-all: turn n-way classification
into n binary classification tasks:

eE.g., for zoo problem, do mammal vs. not-mammal,
fish vs. not-fish, ... bird vs. not-bird, ...

ePick one that results in the highest score (e.g.,
widest margin)
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Binary vs. multi classification (2)

e OVO or one vs one: turn, n-way classes into
N*(N-1)/2 one-vs-one classifiers

e Mammal vs. fish, mammal vs. reptile, etc...

e Use results to choose the classification that
wins the most 1x1 pairings
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SVM Summary

e SVM is a good classification technique for
problems with a large feature space

e Relatively fast to train and apply the model

eThe kernel trick can help make some
problems more-nearly linearly separable

e Their binary nature makes then a poorer fit
for multi-way classification
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