
Planning 1
Chapter 11.1-11.3

Some material adopted from notes
by Andreas Geyer-Schulz

and Chuck Dyer

13.pdf

Blocks World Planning

A BC

A
B
C

Blocks world
The blocks world is a micro-world with a
table, a set of blocks, and a robot hand
Some constraints for a simple model:

– Only one block can be on another block
– Any number of blocks can be on the table
– The hand can only hold one block

Typical representation uses a logic notation:
ontable(b) ontable(d)
on(c,d) holding(a)
clear(b) clear(c)

https://en.wikipedia.org/wiki/Blocks_world

Typical BW planning problem

Initial state:
clear(a)
clear(b)
clear(c)
ontable(a)
ontable(b)
ontable(c)
handempty

Goal:
on(b,c)
on(a,b)
ontable(c)

A BC

A
B
C

Typical BW planning problem

Initial state:
clear(a)
clear(b)
clear(c)
ontable(a)
ontable(b)
ontable(c)
handempty

Goal state:
on(b,c)
on(a,b)
ontable(c)

A BC

A
B
C

Plan:
pickup(b)
stack(b,c)
pickup(a)
stack(a,b)

Logical assertions
describing initial &
final states

Sequence
of robot
actions

Planning problem
•Find sequence of actions to achieve goal state

when executed from initial state given
– set of possible primitive actions, including their

preconditions and effects
– initial state description
– goal state description

•Compute plan as a sequence of actions that,
when executed in initial state, achieves goal state

•States specified as a KB , i.e. conjunction of
conditions
– e.g., ontable(a) Ù on(b, a)

Planning vs. problem solving
• Problem solving methods can solve similar

problems
• Planning is more powerful and efficient because of

the representations and methods used
• States, goals, and actions are decomposed into sets

of sentences (usually in first-order logic)
• Search often proceeds through plan space rather

than state space (though there are also state-space
planners)

• Sub-goals can be planned independently, reducing
the complexity of the planning problem

Typical simplifying assumptions
• Atomic time: Each action is indivisible
• No concurrent actions: but actions need not be

ordered w.r.t. each other in the plan
• Deterministic actions: action results completely

determined — no uncertainty in their effects
• Agent is the sole cause of change in the world
• Agent is omniscient with complete knowledge of

the state of the world
• Closed world assumption: everything known to be

true in world is included in state description and
anything not listed is false

Blocks world
The blocks world consists of a table, a set of blocks and
a robot hand
Some domain constraints:

– Only one block can be on another block
– Any number of blocks can be on

the table
– The hand can only hold one block

Typical representation:
ontable(b) ontable(d)
on(c,d) holding(a)
clear(b) clear(c)

Meant to be a simple model!

Typical BW planning problem

Initial state:
clear(a)
clear(b)
clear(c)
ontable(a)
ontable(b)
ontable(c)
handempty

Goal:
on(b,c)
on(a,b)
ontable(c)

A BC

A
B
C

A plan:
pickup(b)
stack(b,c)
pickup(a)
stack(a,b)

Another BW planning problem

Initial state:
clear(a)
clear(b)
clear(c)
ontable(a)
ontable(b)
ontable(c)
handempty

Goal:
on(a,b)
on(b,c)
ontable(c)

A BC

A
B
C

A plan:
pickup(a)
stack(a,b)
unstack(a,b)
putdown(a)
pickup(b)
stack(b,c)
pickup(a)
stack(a,b)

Another BW planning problem

Initial state:
clear(a)
clear(b)
clear(c)
ontable(a)
ontable(b)
ontable(c)
handempty

Goal:
on(a,b)
on(b,c)
ontable(c)

A BC

A
B
C

A plan:
pickup(a)
stack(a,b)
unstack(a,b)
putdown(a)
pickup(b)
stack(b,c)
pickup(a)
stack(a,b)

Note: Goals in a
different order!

Yet Another BW planning problem

Initial state:
clear(c)
ontable(a)
on(b,a)
on(c,b)
handempty

Goal:
on(a,b)
on(b,c)
ontable(c)

A
B
C

A
B
C

Plan:
unstack(c,b)
putdown(c)
unstack(b,a)
putdown(b)
pickup(a)
stack(a,b)
unstack(a,b)
putdown(a)
pickup(b)
stack(b,c)
pickup(a)
stack(a,b)

Note: not very
efficient!

Major approaches
•Planning as search
•GPS / STRIPS
•Situation calculus
•Partial order planning
•Hierarchical decomposition (HTN planning)
•Planning with constraints (SATplan, Graphplan)
•Reactive planning

Shakey the robot

First general-purpose mobile robot to be able
to reason about its own actions

Shakey: Experiments in Robot Plan-
ning and Learning (1972, 24 min)

Shakey the Robot: 1st Robot
to Embody Artificial Intelli-
gence (2017, 6 min.)

https://youtu.be/7bsEN8mwUB8

Strips planning representation
• Classic approach first used in the STRIPS

(Stanford Research Institute Problem Solver) planner
• A State is a conjunction of ground literals

at(Home) Ù ¬have(Milk) Ù ¬have(bananas) ...
• Goals are conjunctions of literals, but may have

variables, assumed to be existentially quantified
at(?x) Ù have(Milk) Ù have(bananas) ...

• Need not fully specify state
– Non-specified conditions either don’t-care or assumed false
– Represent many cases in small storage
– May only represent changes in state rather than entire

situation
• Unlike theorem prover, not seeking whether goal is true, but is

there a sequence of actions to attain it

Shakey the robot

https://en.wikipedia.org/wiki/STRIPS
https://en.wikipedia.org/wiki/Shakey_the_robot

Blocks world operators
• Classic basic operations for the blocks world

– stack(X,Y): put block X on block Y
– unstack(X,Y): remove block X from block Y
– pickup(X): pickup block X
– putdown(X): put block X on the table

• Each represented by
– list of preconditions
– list of new facts to be added (add-effects)
– list of facts to be removed (delete-effects)
– optionally, set of (simple) variable constraints

• For example stack(X,Y):
preconditions(stack(X,Y), [holding(X), clear(Y)])
deletes(stack(X,Y), [holding(X), clear(Y)]).
adds(stack(X,Y), [handempty, on(X,Y), clear(X)])
constraints(stack(X,Y), [X¹Y, Y¹table, X¹table])

STRIPS planning
• STRIPS maintains two additional data structures:

– State List - all currently true predicates.
– Goal Stack - push down stack of goals to be solved, with

current goal on top

• If current goal not satisfied by present state, find
operator that adds it and push operator and its
preconditions (subgoals) on stack

• When a current goal is satisfied, POP from stack
• When an operator is on top stack, record

application of that operator on plan sequence and
use operator’s add and delete lists to update
current state

Typical BW planning problem

Initial state:
clear(a)
clear(b)
clear(c)
ontable(a)
ontable(b)
ontable(c)
handempty

Goal:
on(b,c)
on(a,b)
ontable(c)

A BC

A
B
C

A plan:
pickup(b)
stack(b,c)
pickup(a)
stack(a,b)

Another BW planning problem

Initial state:
clear(a)
clear(b)
clear(c)
ontable(a)
ontable(b)
ontable(c)
handempty

Goal:
on(a,b)
on(b,c)
ontable(c)

A BC

A
B
C

A plan:
pickup(a)
stack(a,b)
unstack(a,b)
putdown(a)
pickup(b)
stack(b,c)
pickup(a)
stack(a,b)

Yet Another BW planning problem

Initial state:
clear(c)
ontable(a)
on(b,a)
on(c,b)
handempty

Goal:
on(a,b)
on(b,c)
ontable(c)

A
B
C

A
B
C

Plan:
unstack(c,b)
putdown(c)
unstack(b,a)
putdown(b)
pickup(b)
stack(b,a)
unstack(b,a)
putdown(b)
pickup(a)
stack(a,b)
unstack(a,b)
putdown(a)
pickup(b)
stack(b,c)
pickup(a)
stack(a,b)

Yet Another BW planning problem

Initial state:
ontable(a)
ontable(b)
clear(a)
clear(b)
handempty

Goal:
on(a,b)
on(b,a)

A B

Plan:
??

Goal interaction
• Simple planning algorithms assume independent sub-goals

– Solve each separately and concatenate the solutions
• The “Sussman Anomaly” is the classic example of the goal

interaction problem:
– Solving on(A,B) first (via unstack(C,A), stack(A,B)) is undone

when solving 2nd goal on(B,C) (via unstack(A,B), stack(B,C))
– Solving on(B,C) first will be undone when solving on(A,B)

• Classic STRIPS couldn’t handle this, although minor
modifications can get it to do simple cases

A B
C

Initial state

A
B
C

Goal state

https://en.wikipedia.org/wiki/Sussman_Anomaly

Fin
25

