-/’(5-'%
o0

First-Order
Logic (FOL)
part 2

Overview

e We'll first give some examples of how to
translate between FOL and English

e Then look at modelling family relations in
FOL

e And finally touch on a few other topics

Translating English to FOL

Every gardener likes the sun
Vx gardener(x) — likes(x,Sun)
All purple mushrooms are poisonous
Vx (mushroom(x) A purple(x)) — poisonous(x)
No purple mushroom is poisonous (two ways)
—dx purple(x) A mushroom(x) A poisonous(x)
Vx (mushroom(x) A purple(x)) = —poisonous(x)

English to FOL: Counting

Use = predicate to identify different individuals

eThere are at least two purple mushrooms
dx dy mushroom(x) A purple(x) A mushroom(y) A
purple(y) A —(x=y)

* There are exactly two purple mushrooms

dx dy mushroom(x) A purple(x) A mushroom(y) A

purple(y) A —=(x=y) A
Yz (mushroom(z) A purple(z)) — ((x=z) v (y=2))

Saying there are 802 different Pokemon will be
hard!

Translating English to FOL

What do these mean?

e You can fool some of the people all of the time

e You can fool all of the people some of the time

Translating English to FOL

What do these mean?

Both English statements are ambiguous

e You can fool some of the people all of the time

There is a nonempty subset of people so easily
fooled that you can fool that subset every time*

For any given time, there is a non-empty subset at
that time that you can fool

e You can fool all of the people some of the time

There are one or more times when it’s possible to
fool everyone*

Everybody can be fooled at some point in time

* Most common interpretation, I think

eperson(x): True iff x is a person

etime(t): True iff tis a point in time

e canFool(x, t): True iff x can be fooled at time t

Note: iff = ifand only if = «

Translating English to FOL

You can fool some of the people all of the time

There is a nonempty group of people so easily fooled
that you can fool that group every time*

= There’s (at least) one person you can fool every time
dx Vt person(x) A time(t) > canFool(x, t)

For any given time, there is a non-empty group at that
time that you can fool

= For every time, there’s a person at that time that
you can fool

Yt dx person(x) A time(t) — canFool(x, t)

* Most common interpretation, I think

Translating English to FOL

You can fool all of the people some of the time
There’s at least one time when you can fool everyone*
dt Vx time(t) A person(x) — canFool(x, t)

Everybody can be fooled at some point in time
Vx dt person(x) A time(t) —» canFool(x, t)

* Most common interpretation, I think

()

2SS

%

Representation Design

e Many options for representing even a simple fact,
e.g., something’s color as red, green or blue, e.g.:
— green(kermit)

— color(kermit, green)
— hasProperty(kermit, color, green)

e Choice can influence how easy it is to use

e Last option of representing properties & relations
as triples used by modern knowledge graphs

— Easy to ask: What color is Kermit? What are Kermit’s
properties?, What green things are there? Tell me
everything you know, ...

10

https://en.wikipedia.org/wiki/Semantic_triple
https://en.wikipedia.org/wiki/Knowledge_Graph

Simple genealogy KB in FOL

Design a knowledge base using FOL that

e Has facts of immediate family relations, e.g.,
spouses, parents, etc.

e Defines of more complex relations (ancestors,
relatives)

e Detect conflicts, e.g., you are your own
parent

e |nfers relations, e.g., grandparent from parent

e Answers queries about relationships between
people

How do we approach this?

e Design an initial ontology of types, e.g.
—e.g., person, man, woman, male, female

e Extend ontology by defining relations, e.g.
— spouse, has_child, has_parent

e Add general constraints to relations, e.g.
—spouse(X,Y)=>~X=Y
—spouse(X,Y) => person(X), person(Y)

e Add FOL sentences for inference, e.g.
—spouse(X,Y) < spouse(Y,X)
—man(X) < person(X) A male(X)

Example: A simple genealogy KB by FOL

Predicates:

—parent(x, y), child(x, y), father(x, y), daughter(x, y), etc.
—spouse(x, y), husband(x, y), wife(x,y)

—ancestor(x, y), descendant(x, y)

—male(x), female(y)

—relative(x, y)

Facts:

—husband(Joe, Mary), son(Fred, Joe)

—spouse(John, Nancy), male(John), son(Mark, Nancy)
—father(Jack, Nancy), daughter(Linda, Jack)
—daughter(Liz, Linda)

—etc.

Example Axioms

(Vx,y) parent(x, y) €<= child (y, x)

(Vx,y) father(x, y) € parent(x, y) A male(x) ;similar for mother(x,
(Vx,y) daughter(x, y) €= child(x, y) A female(x) ;similar for son(x, y)
(Vx,y) husband(x, y) €2 spouse(x, y) A male(x) ;similar for wife(x, y)
(Vx,y) spouse(x, y) €2 spouse(y, xX) ,spouse relation is symmetric
(Vx,y) parent(x, y) — ancestor(x, y)

(3z) parent(x, z) A ancestor(z, y) — ancestor(x, y)

(Vx,y) descendant(x, y) €2 ancestor(y, x)

(Vx,y)(dz) ancestor(z, x) A ancestor(z, y) — relative(x, y)

(Vx,y) spouse(x, y) — relative(x, y) ;related by marriage
(Vx,y)(dz) relative(z, x) A relative(z, y) — relative(x, y) ;transitive

)
)
)
)
)
)
)
)
)
)
)
)

(Vx,y) relative(x, y) €2 relative(y, x) ,symmetric

Axioms, definitions and theorems

e Axioms: facts and rules that capture (important) facts
& concepts in a domain; axioms are used to prove
theorems

— Mathematicians dislike unnecessary (dependent) axioms, i.e.
ones that can be derived from others

— Dependent axioms can make reasoning faster, however

— Choosing a good set of axioms is a design problem

e A definition of a predicate is of the form “p(X) <> ...”
and can be decomposed into two parts

— Necessary description: “p(x) = ...~
— Sufficient description “p(x) « ...”

— Some concepts have definitions (e.g., triangle) and some don’t
(e.g., person)

More on definitions

Example: define father(x, y) by parent(x, y) and
male(x)

e parent(x, y) is a necessary (but not sufficient)
description of father(x, y)

father(x, y) — parent(x, y)

e parent(x, y) » male(x) » age(x, 35) is a sufficient (but
not necessary) description of father(x, y):

father(x, y) < parent(x, y) » male(x) * age(x, 35)

e parent(x, y) » male(x) is a necessary and sufficient
description of father(x, y)

parent(x, y) » male(x) €= father(x, y)

More on definitions

S(x) is a P(x)

necessary #all Ps are Ss
condition of P(x) S(x) (Vx) P(x) =>S(x)
S(x) is a

sufficient S # all Ps are Ss
condition of P(x) P(x) (Vx) P(x) <= S(x)
S(x)is 2 P(x) # all Ps are Ss

necessary and
sufficient

condition of P(x)

—5(x) # all Ss are Ps
(Wx) P(x) <=> S(x)

Higher-order logic

e FOL only lets us quantify over variables, and
variables can only range over objects

e HOL allows us to quantify over relations, e.g.

“two functions are equal iff they produce the same
value for all arguments”

Vi Vg (f=g) <> (Vxf(x) = g(x))
eE.g.: (quantify over predicates)
V'r transitive(r) = (Vxyz) r(x,y) A r(y,z) = r(x,z))

e More expressive, but reasoning is undecide-
able, in general

,
Examples of FOL in use z‘(‘

e Semantics of W3C’s Semantic Web stack
(RDF, RDFS, OWL) is defined in FOL

e OWL Full is equivalent to FOL

e Other OWL profiles support a subset of FOL
and are more efficient

e The semantics of schema.org is only defined
in natural language text

e Wikidata’s knowledge graph (and Google’s)
has a richer schema

20

https://en.wikipedia.org/wiki/Semantic_Web
https://en.wikipedia.org/wiki/Web_Ontology_Language
http://schema.org/
https://www.wikidata.org/

FOL Summary

e First order logic (FOL) introduces predicates,
functions and quantifiers
e More expressive, but reasoning more complex

—Reasoning in propositional logic is NP hard, FOL is
semi-decidable

e Common Al knowledge representation language

—Other KR languages (e.g., OWL) are often defined by
mapping them to FOL

e FOL variables range over objects

—HOL variables range over functions, predicates or
sentences

http://en.wikipedia.org/wiki/Web_Ontology_Language

