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First-Order
Logic (FOL)

part 2



Overview

•We’ll first give some examples of how to 
translate between FOL and English

•Then look at modelling family relations in 
FOL

•And finally touch on a few other topics
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Translating English to FOL

Every gardener likes the sun
"x gardener(x) ® likes(x,Sun)

All purple mushrooms are poisonous
"x (mushroom(x) Ù purple(x)) ® poisonous(x)

No purple mushroom is poisonous (two ways)
¬$x purple(x) Ù mushroom(x) Ù poisonous(x) 
"x  (mushroom(x) Ù purple(x)) ® ¬poisonous(x) 



English to FOL: Counting

Use = predicate to identify different individuals

•There are at least two purple mushrooms
$x $y mushroom(x) Ù purple(x) Ù mushroom(y) Ù
purple(y) Ù ¬(x=y)

• There are exactly two purple mushrooms
$x $y mushroom(x) Ù purple(x) Ù mushroom(y) Ù
purple(y) Ù ¬(x=y) Ù
"z (mushroom(z) Ù purple(z)) ® ((x=z) Ú (y=z)) 

Saying there are 802 different Pokemon will be 
hard!



Translating English to FOL

What do these mean?

•You can fool some of the people all of the time
$x "t  person(x) Ù time(t) ® can-fool(x, t)
"t $x  person(x) Ù time(t) ® can-fool(x, t)

•You can fool all of the people some of the time
$t "x time(t) Ù person(x) ® can-fool(x, t)
"x $t person(x) Ù time(t) ® can-fool(x, t)



Translating English to FOL
What do these mean?

Both English statements are ambiguous
•You can fool some of the people all of the time

There is a nonempty subset of people so easily 
fooled that you can fool that subset every time*

For any given time, there is a non-empty subset at 
that time that you can fool

•You can fool all of the people some of the time
There are one or more times when it’s possible to 

fool everyone*
Everybody can be fooled at some point in time

* Most common interpretation, I think



Some terms we will need

•person(x): True iff x is a person

•time(t): True iff t is a point in time

•canFool(x, t): True iff x can be fooled at time t

Note: iff =  if and only if  =  ↔



Translating English to FOL
You can fool some of the people all of the time

There is a nonempty group of people so easily fooled 
that you can fool that group every time*

≡ There’s (at least) one person you can fool every time
$x "t  person(x) Ù time(t) ® canFool(x, t)

For any given time, there is a non-empty group at that 
time that you can fool

≡ For every time, there’s a person at that time that 
you can fool

"t $x  person(x) Ù time(t) ® canFool(x, t)
* Most common interpretation, I think



Translating English to FOL

You can fool all of the people some of the time
There’s at least one time when you can fool everyone*
$t "x time(t) Ù person(x) ® canFool(x, t)

Everybody can be fooled at some point in time
"x $t person(x) Ù time(t) ® canFool(x, t)

* Most common interpretation, I think



Representation Design
• Many options for representing even a simple fact, 

e.g., something’s color as red, green or blue, e.g.:
– green(kermit)
– color(kermit, green)
– hasProperty(kermit, color, green)

• Choice can influence how easy it is to use
• Last option of representing properties & relations 

as triples used by modern knowledge graphs
– Easy to ask: What color is Kermit? What are Kermit’s 

properties?, What green things are there? Tell me
everything you know, …
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https://en.wikipedia.org/wiki/Semantic_triple
https://en.wikipedia.org/wiki/Knowledge_Graph


Simple genealogy KB in FOL

Design a knowledge base using FOL that

•Has facts of immediate family relations, e.g., 
spouses, parents, etc.

• Defines of more complex relations (ancestors, 
relatives)
• Detect conflicts, e.g., you are your own 
parent
• Infers relations, e.g., grandparent from parent
• Answers queries about relationships between 
people



How do we approach this?
•Design an initial ontology of types, e.g.

– e.g., person, man, woman, male, female
•Extend ontology by defining relations, e.g.

– spouse, has_child, has_parent
•Add general constraints to relations, e.g.

– spouse(X,Y) => ~ X = Y
– spouse(X,Y) => person(X), person(Y)

•Add FOL sentences for inference, e.g.
– spouse(X,Y) ó spouse(Y,X)
– man(X) ó person(X) ∧male(X)



Example: A simple genealogy KB by FOL
Predicates:
– parent(x, y), child(x, y), father(x, y), daughter(x, y), etc.
– spouse(x, y), husband(x, y), wife(x,y)
– ancestor(x, y), descendant(x, y)
– male(x), female(y)
– relative(x, y)

Facts:
– husband(Joe, Mary), son(Fred, Joe)
– spouse(John, Nancy), male(John), son(Mark, Nancy)
– father(Jack, Nancy), daughter(Linda, Jack)
– daughter(Liz, Linda)
– etc.



Example Axioms
("x,y) parent(x, y) ↔ child (y, x)
("x,y) father(x, y) ↔ parent(x, y) Ù male(x) ;similar for mother(x, y)
("x,y) daughter(x, y) ↔ child(x, y) Ù female(x) ;similar for son(x, y)

("x,y) husband(x, y) ↔ spouse(x, y) Ù male(x) ;similar for wife(x, y)
("x,y) spouse(x, y) ↔ spouse(y, x)  ;spouse relation is symmetric
("x,y) parent(x, y) ® ancestor(x, y) 

("x,y)($z) parent(x, z) Ù ancestor(z, y) ® ancestor(x, y) 
("x,y) descendant(x, y) ↔ ancestor(y, x) 
("x,y)($z) ancestor(z, x) Ù ancestor(z, y) ® relative(x, y)

("x,y) spouse(x, y) ® relative(x, y)  ;related by marriage
("x,y)($z) relative(z, x) Ù relative(z, y) ® relative(x, y)  ;transitive
("x,y) relative(x, y) ↔ relative(y, x) ;symmetric



Axioms, definitions and theorems
• Axioms: facts and rules that capture (important) facts 

& concepts in a domain; axioms are used to prove 
theorems

– Mathematicians dislike unnecessary (dependent) axioms, i.e. 
ones that can be derived from others

– Dependent axioms can make reasoning faster, however
– Choosing a good set of axioms is a design problem

• A definition of a predicate is of the form “p(X) ↔ …”
and can be decomposed into two parts
– Necessary description: “p(x) ® …”
– Sufficient description “p(x) ¬ …”
– Some concepts have definitions (e.g., triangle) and some don’t 

(e.g., person)



More on definitions

Example: define father(x, y) by parent(x, y) and 
male(x)
• parent(x, y) is a necessary (but not sufficient) 

description of father(x, y)
father(x, y) ® parent(x, y)

• parent(x, y) ^ male(x) ^ age(x, 35) is a sufficient (but 
not necessary) description of father(x, y):

father(x, y) ¬ parent(x, y) ^ male(x) ^ age(x, 35) 
• parent(x, y) ^ male(x) is a necessary and sufficient 

description of father(x, y) 
parent(x, y) ^ male(x) ↔ father(x, y)



More on definitions

P(x)

S(x)

S(x) is a 
necessary 
condition of P(x)

# all Ps are Ss
("x) P(x) => S(x)

S(x)

P(x)

S(x) is a 
sufficient 
condition of P(x)

# all Ps are Ss
("x) P(x) <= S(x)

P(x)

S(x)

S(x) is a 
necessary and 
sufficient 
condition of P(x)

# all Ps are Ss
# all Ss are Ps
("x) P(x) <=> S(x)



Higher-order logic

•FOL only lets us quantify over variables, and 
variables can only range over objects 

•HOL allows us to quantify over relations, e.g.
“two functions are equal iff they produce the same 

value for all arguments”

"f "g (f = g) « ("x f(x) = g(x))

•E.g.: (quantify over predicates)
"r transitive( r ) ® ("xyz) r(x,y) Ù r(y,z) ® r(x,z)) 

•More expressive, but reasoning is  undecide-
able, in general



Examples of FOL in use
•Semantics of W3C’s Semantic Web stack 

(RDF, RDFS, OWL) is defined in FOL
•OWL Full is equivalent to FOL
•Other OWL profiles support a subset of FOL 

and are more efficient
•The semantics of schema.org is only defined 

in natural language text
•Wikidata’s knowledge graph (and Google’s) 

has a richer schema
20

https://en.wikipedia.org/wiki/Semantic_Web
https://en.wikipedia.org/wiki/Web_Ontology_Language
http://schema.org/
https://www.wikidata.org/


FOL Summary
•First order logic (FOL) introduces predicates, 

functions and quantifiers
•More expressive, but reasoning more complex

– Reasoning in propositional logic is NP hard, FOL is 
semi-decidable

•Common AI knowledge representation language
– Other KR languages (e.g., OWL) are often defined by 

mapping them to FOL

•FOL variables range over objects
– HOL variables range over functions, predicates or 

sentences

http://en.wikipedia.org/wiki/Web_Ontology_Language


Fin
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