-/’(5-'%
o0

First-Order
Logic (FOL)
part 1

FOL Overview

First Order logic (FOL) is a powerful
<nowledge representation (KR) system

t’s used in Al systems in various ways, e.g.

—To directly represent and reason about concepts
and objects

—To formally specify the meaning of other KR
systems

—To provide features that are useful in neural
network deep learning systems

First-order logic

e First-order logic (FOL) models the world in terms of
— Objects, which are things with individual identities
— Properties of objects that distinguish them from others
— Relations that hold among sets of objects

— Functions, a subset of relations where there is only one
“value” for any given “input”

e Examples:
— Objects: students, lectures, companies, cars ...

— Relations: brother-of, bigger-than, outside, part-of, has-
color, occurs-after, owns, visits, precedes, ...

— Properties: blue, oval, even, large, ...
— Functions: father-of, best-friend, more-than ...

User provides

e Constant symbols representing individuals in world
—BarackObama, Green, John, 3, “John Smith”

e Predicate symbols, map individuals to truth values
—greater(5,3)
—green(Grass)
—color(Grass, Green)
—hasBrother(John, Robert)

e Function symbols, map individuals to individuals
—father_of(SashaObama) = BarackObama
—color_of(Sky) = Blue

What do these mean?

e User should also indicate what these mean in a way
that humans will understand

—i.e., map to their own internal representations

e May be done via a combination of

— Choosing good names for a formal terms, e.g. calling a
concept HumanBeing instead of Q5

— Comments in the definition #human being
— Descriptions and examples in documentation

— Reference to other representations, e.g., sameAs
/m/0dgw95 in Freebase and Person in schema.org

— Giving examples (Donald Trump) and non-examples (Luke
Skywalker)

https://www.wikidata.org/wiki/Q5
https://tools.wmflabs.org/freebase/m/0dgw9r
https://schema.org/Person

FOL Provides

eVariable symbols
—E.g., X, Y, foo
e Connectives

—Same as propositional logic: not (=), and
(A), or (Vv), implies (—), iff (<)

e Quantifiers
—Universal Vx or (Ax)
—Existential dx or (Ex)

Sentences: built from terms and atoms

eterm (denoting an individual): constant or vari-
able symbol, or n-place function of n terms, e.g.:

—Constants: john, umbc

—Variables: X, Y, Z

—Functions: mother_of(john), phone(mother(x))
e Ground terms have no variables in them

—Ground: john, father_of(father_of(john))
—Not Ground: father_of(X)

e Syntax may vary: e.g., maybe variables must start
with a “?” of a capital letter

Sentences: built from terms and atoms

e atomic sentences (which are either true or
false) are n-place predicates of n terms, e.g.:
—green(kermit)
—between(philadelphia, baltimore, dc)
—loves(X, mother(X))

e complex sentences formed from atomic ones
connected by the standard logical connectives
with quantifiers if there are variables, e.g.:
—loves(mary, john) v loves(mary, bill)
— Vx loves(mary, x)

What do atomic sentences mean?

e Unary predicates typically encode a type
—muppet(Kermit): kermit is a kind of muppet
—green(kermit): kermit is a kind of green thing
—integer(X): x is a kind of integer

e Non-unary predicates typically encode relations
or properties
—Loves(john, mary)

—Greater_than(2, 1)
—Between(newYork, philadelphia, baltimore)
—hasName(john, “John Smith”)

PPPPP

Ontology

Animal

aaaaaa

e Desighing a logic representation is like design-
ing a model in an object-oriented language

e Ontology: a “formal naming and definition of
the types, properties and relations of entities

for a domain of discourse”

eE.g.: schema.org ontology used to put semantic
data on Web pages to help search engines

—Here’s the semantic markup Google sees on our 471

class site

https://en.wikipedia.org/wiki/Ontology
http://schema.org/
https://search.google.com/structured-data/testing-tool/u/0/

Sentences: built from terms and atoms

e quantified sentences adds quantifiers V and 3
Vx loves(x, mother(x))

dx number(x) A greater(x, 100), prime(x)

e well-formed formula (wff): a sentence with no
free variables or where all variables are bound
by a universal or existential quantifier

In (Vx)P(x, y) xis bound & y is free so it’s not a wff

Quantifiers: V and 3

e Universal quantification

—(Vx)P(X) means P holds for all values of X
in the domain associated with variable?!

—E.g., (VX) dolphin(X) > mammal(X)
e Existential quantification

—(dx)P(X) means P holds for some value of X
in domain associated with variable

—E.g., (AX) mammal(X) A lays_eggs(X)

—This lets us make statements about an
object without identifying it

La variable’s domain is often not explicitly stated and is assumed by the context

Universal Quantifier: V

e Universal quantifiers typically used with
implies to form rules:

Logic: (VX) student(X) — smart(X)
Means: All students are smart

e Universal quantification rarely used without
implies:
Logic: (VX) student(X) A smart(X)
Means: Everything is a student and is smart

Existential Quantifier: 3

e Existential quantifiers usually used with and to
specify a list of properties about an individual

Logic: (7 X) student(X) A smart(X)
Meaning: There is a student who is smart
e Common mistake: represent this in FOL as:
Logic: (7 X) student(X) — smart(X)
Meaning: ?

Existential Quantifier: 3

e Existential quantifiers usually used with and to
specify a list of properties about an individual
Logic: (7 X) student(X) A smart(X)
Meaning: There is a student who is smart

e Common mistake: represent this in FOL as:
Logic: (7 X) student(X) — smart(X)
P—>Q="~PvQ
F X student(X) — smart(X) = 7 X ~student(X) v smart(X)

Meaning: There’s something that is either not a
student or is smart

Quantifier Scope

e FOL sentences have structure, like programs
e |n particular, variables in a sentence have a scope

e Suppose we want to say “everyone who is alive loves
someone”

(VX) alive(X) = (3 Y) loves(X, Y)
e Here’s how we scope the variables

(VX) alive(X) — (3Y) loves(X, Y)

Scope of x
— SCOpE Of y

Quantifier Scope

e Switching order of universal quantifiers does not
change the meaning

— (VX)(VY)P(X,)Y) <= (VY)(VX) P(X,Y)
— Dogs hate cats (i.e., all dogs hate all cats)
e You can switch order of existential quantifiers
— (IX)(AY)P(X,Y) <= (3Y)(IX) P(X,Y)
— A cat killed a dog

e Switching order of universal and existential
quantifiers does change meaning:

— Everyone likes someone: (VX)(3Y) likes(X,Y)
—Someone is liked by everyone: (3Y)(VX) likes(X,Y)

def verifyl():
Everyone likes someone: (Vx)(3y) likes(x,y)

for plin people():
Every person has at

least one individual that
they like.

foundLike = False
for p2 in people():
if likes(pl, p2):
foundLike = True
break
if not foundLike:
print(pl, ‘does not like anyone ®’)
return False

return True

Procedural example 1

def verify2():
Someone is liked by everyone: (3y)(Vx) likes(x,y)
for p2 in people():

foundHater = False There is a person who is

liked by every person in
the universe.

for plin people():
if not likes(p1, p2):
foundHater = True
break
if not foundHater
print(p2, ‘is liked by everyone ©’)
return True

return False

Procedural example 2

Connections between V and 3

e \We can relate sentences involving ¥V and 3
using extensions to De Morgan’s laws:
1. (Vx) P(x) > —(3dx) = P(x)
2. —(Vx) P(x) €<= (dx) —P(x)
3. (3 x) P(x) <> = (V x) =P(x)
4. —(3dx) P(x) <> (Vx) =P(x)
e Examples
1. All dogs don’t like cats <> No dog likes cats
2. Not all dogs bark €<= There is a dog that doesn’t bark
3. All dogs sleep €= There is no dog that doesn’t sleep
4. There is a dog that talks <> Not all dogs can’t talk

http://en.wikipedia.org/wiki/De_Morgan's_laws

Notational differences

e Different symbols for and, or, not, implies, ...
—-Vid1=>S AV aeD
—pv(g”hr)
—p+(q*r)
*Prolog
cat(X) :- furry(X), meows (X), has(X, claws)

e Lispy notations
(forall ?x (implies (and (furry ?x)
(meows ?x)
(has ?x claws))

(cat ?x)))

