(aka Games)

Chapter 5

Some material adopted from notes by Charles R. Dyer, U of Wisconsin-Madison

Why study games?

* Interesting, hard problems requiring minimal
“initial structure”

e Clear criteria for success

 Study problems involving {hostile, adversarial,
competing} agents and uncertainty of interacting
with the natural world

* People have used them to assess their intelligence

* Fun, good, easy to understand, PR potential

» Games often define very large search spaces, €.g.
chess 35'% nodes in search tree, 10%° legal states

Chess early days

* 1948: Norbert Wiener describes how chess program can
work using minimax search with an evaluation function

* 1950: Claude Shannon publishes Programming a
Computer for Playing Chess

* 1951: Alan Turing develops on paper 1st program
capable of playing full chess games (Turochamp)

« 1958: 1st program plays full game on IBM 704 (loses)

* 1962: Kotok & McCarthy (MIT) 1st program to play
credibly

* 1967: Greenblatt’s Mac Hack Six (MIT) defeats a
person 1n regular tournament play

https://en.wikipedia.org/wiki/Cybernetics:_Or_Control_and_Communication_in_the_Animal_and_the_Machine
http://www.csee.umbc.edu/courses/graduate/671/fall12/resources/ProgrammingaComputerforPlayingChess.pdf
https://en.wikipedia.org/wiki/Turochamp
https://www.youtube.com/watch%3Fv=iT_Un3xo1qE
https://en.wikipedia.org/wiki/Kotok-McCarthy
http://en.wikipedia.org/wiki/Mac_Hack

State of the art
* 1979 Backgammon: BKG (CMU) tops world champ
* 1994 Checkers: Chinook 1s the world champion
* 1997 Chess: IBM Deep Blue beat Gary Kasparov
* 2007 Checkers: solved (it’s a draw)
* 2016 Go: AlphaGo beat champion Lee Sedol

« 2017 Poker: CMU’s Libratus won $1.5M from 4 top
poker players in 3-week challenge in casino

* 20?? Bridge: Expert bridge programs exist, but no
world champions yet

http://www.bkgm.com/articles/Berliner/BackgammonProgramBeatsWorldChamp/
https://en.wikipedia.org/wiki/Chinook_(draughts_player)
https://en.wikipedia.org/wiki/Deep_Blue_(chess_computer)
http://www.cs.nyu.edu/courses/spring13/CSCI-UA.0472-001/Checkers/checkers.solved.science.pdf
https://en.wikipedia.org/wiki/AlphaGo
https://en.wikipedia.org/wiki/Libratus
https://en.wikipedia.org/wiki/Computer_bridge

How can
we do it?

Classical vs. Statistical approach

e We'll look first at the classical
approach used from the 1940s to
2010

e Then at newer statistical
approached of which AlphaGo is
an example

e These share some techniques

Typical simple case for a game

 2-person game
* Players alternate moves
e Zero-sum: one player’s loss 1s the other’s gain

* Perfect information: both players have access to
complete information about state of game. No
information hidden from either player.

* No chance (e.g., using dice) involved

« Examples: Tic-Tac-Toe, Checkers, Chess, Go, Nim,
Othello

* But not: Bridge, Solitaire, Backgammon, Poker,
Rock-Paper-Scissors, ...

Can we use ...

e Uninformed search?
e Heuristic search?
e | ocal search?

e Constraint based search?

None of these model the fact
that we have an adversary ...

How to play a game

* A way to play such a game is to:
—Consider all the legal moves you can make
— Compute new position resulting from each move
—Evaluate each to determine which 1s best
—Make that move
— Wait for your opponent to move and repeat

» Key problems are:
—Representing the “board” (i.e., game state)
—Generating all legal next boards
—Evaluating a position

Evaluation function

 Evaluation function or static evaluator used to
evaluate the “goodness” of a game position
Contrast with heuristic search, where evaluation function
estimates cost from start node to goal passing through given node
e Zero-sum assumption permits single function to describe
goodness of board for both players

—f(n) >> 0: position n good for me; bad for you
—1f(n) << 0: position n bad for me; good for you
—f(n) near 0: position n 1s a neutral position

— f(n) = +infinity: win for me

—f(n) = -infinity: win for you

https://en.wikipedia.org/wiki/Zero-sum_game

Evaluation function examples

* For Tic-Tac-Toe
f(n) = [# my open 3lengths] - [# your open 3lengths]

Where 3length 1s complete row, column or diagonal
that has no opponent marks

* Alan Turing’s function for chess
—f(n) = w(n)/b(n) where w(n) = sum of point value
of white’s pieces and b(n) = sum of black’s

—Traditional piece values: pawn:1; knight:3;
bishop:3; rook:5; queen:9

Evaluation function examples

* Most evaluation functions specified as a
weighted sum of positive features
f(n) = w,*feat,(n) + w,*feat,(n) + ... + w *feat, (n)
» Example chess features are piece count, piece

values, piece placement, squares controlled,
etc.

* IBM’s chess program Deep Blue (circa 1996)

had >&8K features in its evaluation function

https://en.wikipedia.org/wiki/Deep_Blue_(chess_computer)

But, that’s not how people play

* People also use look ahead

1.6., enumerate actions, consider opponent’s
possible responses, REPEAT

* Producing a complete game tree 1s only
possible for simple games

* S0, generate a partial game tree for some
number of plys

—Move = each player takes a turn
—Ply = one player’s turn

* What do we do with the game tree?

http://en.wikipedia.org/wiki/Game_tree
https://en.wikipedia.org/wiki/Ply_(game_theory)

MAX (X)

X X X B
MIN (O) X % X
r\ X x X
X|O Xl |0 X_
MAX (X) 0 :
* We can easily generate a
complete game tree for
X0 X h.ALS] X0 .
MIN (O) X X Tic-Tac-Toe
* Taking board symmetries
_ Into account, there are
| | ‘ 138 terminal positions
X0 X X0 X| [X|O|X x i ”
sl ot X X0 * 91 wins for X, 44 for O
B ESLEIOL SO and 3 draws
Wkility 1 0 +1

Game trees _REE

* Problem spaces for typical games are trees

* Root node 1s current board configuration; player
must decide best single move to make next

 Static evaluator function rates board position
f(board):real, >0 for me; <0 for opponent

 Arcs represent possible legal moves for a player

e [f my turn to move, then root 1s labeled a "MAX"
node; otherwise 1t’s a "MIN" node

e Each tree level’s nodes are all MAX or all MIN;
nodes at level 1 are of opposite kind from those at
level 1+1

Game Tree for Tic-Tac-Toe

. MAX nodes

1
1

MAX’ s play — /

MIN’s play —

- MIN nodes

1
1
1

Here, symmetries are used to
reduce branching factor

Terminal state
(win for MAX) —

Minimax procedure

e Create MAX node with current board
configuration

* Expand nodes to some depth (a.k.a. plys) of
lookahead 1n game

* Apply evaluation function at each leaf node

* Back up values for each non-leaf node until value
1s computed for the root node
— At MIN nodes: value 1s minimum of children’s values
— At MAX nodes: value 1s maximum of children’s values

* Choose move to child node whose backed-up
value determined value at root

Minimax theorem

e Intuition: assume your opponent is at least as smart as
you and play accordingly

—If she’s not, you can only do better!

 Von Neumann, J: Zur Theorie der Gesellschafts-
spiele Math. Annalen. 100 (1928) 295-320

For every 2-person, 0-sum game with finite strategies, there 1s
a value V and a mixed strategy for each player, such that (a)
given player 2's strategy, best payoff possible for player 1 1s
V, and (b) given player 1's strategy, best payoff possible for
player 2 1s V.

* You can think of this as:
—Minimizing your maximum possible loss

—Max1imizing your minimum possible gain

https://en.wikipedia.org/wiki/John_von_Neumann

Minimax Algorithm

2
— =)
2071 8 2 71 8 2 71 8

] This is the move 1 2

selected by minimax

Static evaluator value

Partial Game Tree for Tic-Tac-Toe

MAX (X)
X] X X
MIN (O) X X X
F\ . . .
X|0 x| |o| [x
MAX (X) 0
f(n)=+1 1f position win for X
xlolx| [xlo xlo . L. .
N (0) ¥ 2 f(n)=-1 1f position win for O
| ~ 7 1(n)=0 if position a draw
X0 X X|01X] [X|O]X ===
TERMINAL O[X| [0O]|O[X X
0O X X10 X100
Ukility 1 0 +1

Why backed-up values?

* Why not just use a good static evaluator metric on
immediate children

* Intuition: if metric 1s good, doing look ahead and
backing up values with Minimax should be better

" Non-leaf node N’s backed-up value 1s value of best
state MAX can reach at depth h i1f MIN plays well

= “plays well”: same criterion as MAX applies to itself

" [f e 1s good, then backed-up value 1s better estimate
of STATE(N) goodness than ¢(STATE(N))

= Use lookahead horizon h because time to choose
move 1s Iimited

Minimax Tree

Pl & X

Pl 1

3
\ value computed
f value by minimax

Is that all
there is to simple
games?

Alpha-beta pruning

* Improve performance of the minimax
algorithm through alpha-beta pruning

o “If you have an idea that is surely bad, don't take
the time to see how truly awful it is ~ -Pat Winston (MIT)

MAX

* We don’t need to compute

MIN B: =2 the value at this node

 No matter what 1t 1s, 1t can’t

MAX affect value of the root node

https://en.wikipedia.org/wiki/Alpha%25E2%2580%2593beta_pruning

Alpha-beta pruning

 Traverse search tree 1n depth-first order
* At MAX node n, alpha(n) = max value found so far

Alpha values start at -co and only increase

* At MIN node n, beta(n) = min value found so far
Beta values start at +oo and only decrease

* Beta cutoff: stop search below MAX node N (1.e.,

don’t examine more descendants) 1f alpha(N) >=
beta(i) for some MIN node ancestor 1 of N

 Alpha cutoff: stop search below MIN node N 1f
beta(N)<=alpha(i) for a MAX node anceastor 1 of N

Alpha-Beta Tic-Tac-Toe Example

P

Alpha-Beta Tic-Tac-Toe Example

B: 2

/

P

Beta value of a MIN
node is upper bound on
final backed-up value;
it can never increase

Alpha-Beta Tic-Tac-Toe Example

B: 1

A

P

Beta value of a MIN
node is upper bound on
final backed-up value;
it can never increase

Alpha-Beta Tic-Tac-Toe Example

P

A

Alpha value of MAX
node is lower bound on
final backed-up value;
it can never decrease

Alpha-Beta Tic-Tac-Toe Example

B

1

Alpha-Beta Tic-Tac-Toe Example

a=1
B=1 p=-1
oh
2 1 -1

Discontinue search below a MIN node whose beta

value £ alpha value of one of its MAX ancestors

Another alpha-beta example

MAX zfzx =3

B=14

/ _prune’ \\Q:iiii\

AAA

Alpha-Beta Tic-Tac-Toe Example 2

L]

MALAMAMALLL]

05 -33 3 -302 -23 525 -50151 -30 -55 -33 2

O[]

OO omon

05

L1 L]

L

OOt

-33 3 -302 -23 525 -50151 -30 -55 -33 2

0[]

OO omon

05

L1 L]

L

OOt

-33 3 -302 -23 525 -50151 -30 -55 -33 2

O[]-3

II I

05

L

L

OOt

-33 3 -302 -23 525 -50151 -30 -55 -33 2

O[]-3

II I

05

L

L

OOt

-33 3 -302 -23 525 -50151 -30 -55 -33 2

O[]-3

II I

05

0 L]

L

L

OOt

-33 3 -302 -23 525 -50151 -30 -55 -33 2

0 L]

0-3 |

L

L

IIQLI ninjnlniululululs

OOt

-33 3 -302 -23 525 -50151 -30 -55 -33 2

0 L] N

0-3 |

L

L

--QL- O ujululnls

OOt

-33 3 -302 -23 525 -50151 -30 -55 -33 2

(o]

oL |

0 L] N

0-3 |

L

L

--QL- O ujululnls

OOt

-33 3 -302 -23 525 -50151 -30 -55 -33 2

oL

oL |

0 L] L

0-3 5[

L

L

--QL- O ujululnls

OOt

-33 3 -302 -23 525 -50151 -30 -55 -33 2

oL

oL |

0 L] L

0-3 2

L

L

--QL- O ujulululs

OOt

-33 3 -302 -23 525 -50151 -30 -55 -33 2

oL

oL |

0 L] L

0-3 2

L

OOt

-33 3 -302 -23 525 -50151 -30 -55 -33 2

oL

oL |

0 L] r4l

0-3 2

2[

L

OOt

-33 3 -302 -23 525 -50151 -30 -55 -33 2

oL L]
oL | 20 | N L]
0 L[] 20 L] L]
0 3 2]
0 -3 21 9 00O 0o
IIQLI 0 min] 111 nlujsinlslsj==is

-33 3 -302 -23 525 -50151 -30 -55 -33 2

oL

oL L]
oL | 20 | N L]
0 L[] 20 L] L]
0 3 2 n
04 -3 214 4 0 o oo
IIQLI 0 min] 111 |nislnlslsisls]=is

-33 3 -302 -23 525 -50151 -30 -55 -33 2

oL J

(o]l
(o]l 21 | N
o L[] 2] N N
0 3 2 L
04 -3 20 st O O OO
IIQLI 0 miml 111 |Enlsislslssl=ls
-33 3 -302 -23 5 25 -50151 -30 -5 -33 2

oL J

(o]l
(o]l 21 | N
o L[] 2] N N
0 3 2 L
04 -3 20 ¥ o0 oD oo
IIQLI 0 mml 111 |nlslsinlslsinl=ls
-33 3 -302 -23 5 25 -50151 -30 -5 -33 2

oL J
(o] |

oL | 2l | | H

0 L] 2l N |

0[] -3 A 2] 1] -3] L L L]
IIQLI 0 mlml 1 11 lnelsisl=lsislnls

-33 3 -302 -23 525 -50151 -30 -55 -33 2

oL J
(o] |

oL | 2l | | H

0 L] 2l N |

0[] -3 A 2] 1] -31 L L L]
IIQLI 0 miml 111 anlsl Inisinl=ls

-33 3 -302 -23 525 -50151 -30 -55 -33 2

oL J
(o] |

oL | 2l | 1] H

0 L] 2l 1L |

0[] -3 A 2] 1] -31 L L L]
IIQLI 0 miml 111 anlsl Inisinl=ls

-33 3 -302 -23 525 -50151 -30 -55 -33 2

(o]

oL | 2[

0 L] 21

oL J

104

10

1L -3;

i

a\.z\. 2. - d\-ﬂ alals

L1 [

-33 3 -302 -23 525 -50151 -30 -55 -33 2

(o]

oL | 2[

0 L] 21

oL J

104

10

1L -3;

i

a\.z\. 2. - d\-ﬂ alals

L1 [

-33 3 -302 -23 525 -50151 -30 -55 -33 2

(o]

oL | 2[

0 L] 21

oL J

1L -3;

a\.z\. 2. - d\-ﬂ alals

-33 3 -302 -23 525 -50151 -30 -55

L1 [

-33 2

(o]

oL | 2[

0 L] 21

oL J

1L -3;

a\../.\. 2. - d\-ﬂ 1=

-33 3 -302 -23 525 -50151 -30 -55

]

-33 2

(o]

oL | 2[

0 L] 21

104

1

1L -3;

a\../.\. 2. - d\-ﬂ 1=

-33 3 -302 -23 525 -50151 -30 -55

]

-33 2

104
(o] 10

oL | 2l | 1L 20

0 L] 21 10 -5 2[_

0] 3 2 1 -5}5\2
0[] -3;5 3L 2L 1L] -3;5 -5;5 ZH]
ielel =T :\-:\-d\-d :\.ﬂ

05 -33 3 -302 -23 525 -50151 -30 -55 -33 2

With alpha-beta we avoided computing a static
evaluation metric for 14 of the 25 leaf nodes

104
(o] 10

oL | 2l | 1L 21

0 L] 21 1L -5 2

0) 3 2 1] -ﬁ;h 2
0 -3 3 21 l\.l\: Enln l\:;ﬁ
mwls] =] 1 mw] 11 IIQLﬁ 1 n

05 -33 3 -302 -23 525 -50151 -30 -55 -33 2

Effectiveness of alpha-beta

* Alpha-beta guaranteed to compute same value for
root node as minimax, but with < computation

* Worst case: no pruning, examine b¢ leaf nodes,
where nodes have b children & d-ply search 1s
done

* Best case: examine only (2b)%? leaf nodes

— You can search twice as deep as minimax!

—QOccurs if each player’s best move is 1st alternative

* In Deep Blue, alpha-beta pruning reduced effective
branching factor from ~35 to ~6

https://en.wikipedia.org/wiki/Deep_Blue_(chess_computer)

Many other improvements

= Adaptive horizon + iterative deepening

= Extended search: retain k>1 best paths (not
just one) extend tree at greater depth below
their leaf nodes to help dealing with “horizon
effect”

= Singular extension: If move is obviously
better than others 1n node at horizon h,
expand it

= Use transposition tables to deal with
repeated states

https://en.wikipedia.org/wiki/Transposition_table

