
Uninformed 
Search
Chapter 3

Some material adopted from notes 
by Charles R. Dyer, University of 

Wisconsin-Madison



Today’s topics
• Goal-based agents
• Representing states and actions
• Example problems
• Generic state-space search algorithm
• Specific algorithms
– Breadth-first search
– Depth-first search
– Uniform cost search
– Depth-first iterative deepening

• Example problems revisited



Big Idea

Allen Newell and Herb Simon developed
the problem space principle as an AI
approach in the late 60s/early 70s

"The rational activity in which people engage to solve a 
problem can be described in terms of (1) a set of states
of knowledge, (2) operators for changing one state into 
another, (3) constraints on applying operators and (4) 
control knowledge for deciding which operator to apply 
next."

Newell A & Simon H A. Human problem solving.
Englewood Cliffs, NJ: Prentice-Hall. 1972. 

https://en.wikipedia.org/wiki/Allen_Newell
https://en.wikipedia.org/wiki/Herbert_A._Simon


Example: 8-Puzzle
Given an initial configuration of 8 numbered 
tiles on a 3x3 board, move the tiles to 
produce a desired goal configuration



15 puzzle
•Popularized, but not 
invented, by Sam Loyd
•He offered $1000 to all 
who could solve it in 1896
•He sold many puzzles
• Its states form two
disjoint spaces
•There was no path to 
solution from initial
state!

Sam Loyd's 1914 illustration of the unsolvable variation

http://en.wikipedia.org/wiki/15_puzzle
http://en.wikipedia.org/wiki/Sam_Loyd
http://www.indiana.edu/~liblilly/collections/overview/puzzle_docs/Sam_Loyd_Successful_Hoax.pdf


Building goal-based agents
We must answer the following questions
–How do we represent the state of the “world”?
–What is the goal and how can we recognize it?
–What are the possible actions?
–What relevant information do we encoded to 

describe states, actions and their effects and thereby 
solve the problem? 

initial state goal state



Representing states

• State of an 8-puzzle?



Representing states

• State of an 8-puzzle?
• A 3x3 array of integer in {0..8}
• No integer appears twice
• 0 represents the empty space

• In Python, we might implement this using a 
nine-character string: “540681732”

• And write functions to male the 2D 
coordinates to an index



What’s the goal to be achieved?
• Describe situation we want to achieve, a set 

of properties that we want to hold, etc. 
• Defining a goal test function that when 

applied to a state returns True or False
• For our problem:

def isGoal(state):
return state == “123405678”



What are the actions?
• Primitive actions for changing the state

In a deterministic world: no uncertainty in an 
action’s effects (simple model)

• Given action and description of current 
world state, action completely specifies 
– Whether action can be applied to the current 

world (i.e., is it applicable and legal?) and 
– What state results after action is performed in 

the current world (i.e., no need  for history 
information to compute  the next state)



Representing actions

• Actions ideally considered as discrete events
that occur at an instant of time

• Example, in a planning context
– If  state:inClass and perform action:goHome, then 

next state is state:atHome
– There’s no time where you’re neither in class nor at 

home (i.e., in the state of “going home”)



Representing actions

• Actions for 8-puzzle?



Representing actions

• Actions for 8-puzzle?

• Number of actions/operators depends on the 
representation used in describing a state
– Specify 4 possible moves for each of the 8 tiles, 

resulting in a total of 4*8=32 operators
– Or, Specify four moves for “blank” square and we 

only need 4 operators

• Representational shift can simplify a problem!



Representing states
• Size of a problem usually described in 

terms of possible number of states

– Tic-Tac-Toe has about 39 states (19,683≈2*104)
– Checkers has about 1040 states
– Rubik’s Cube has about 1019 states
– Chess has about 10120 states in a typical game
– Go has 2*10170

– Theorem provers may deal with an infinite space

• State space size ≈ solution difficulty



Representing states
• Our estimates were loose upper bounds
• How many possible, legal states does tic-

tac-toe really have?
• Simple upper bound: nine board cells, each 

of which can be empty, O or X, so 39

• Only 593 states after eliminating
– impossible states

– Rotations and reflections X

X

X X



Some example problems

• Toy problems and micro-worlds
–8-Puzzle
–Missionaries and Cannibals
–Cryptarithmetic
–Remove 5 Sticks
–Water Jug Problem

• Real-world problems



The 8-Queens Puzzle 

Place eight queens 
on a chessboard 
such that no queen 
attacks any other

We can generalize 
the problem to a 
NxN chessboard

What are the states, goal test, actions?

http://en.wikipedia.org/wiki/Eight_queens_puzzle


Route Planning

Find a route from Arad to Bucharest

A simplified map of major roads in Romania used in our text



Water Jug Problem
• Two jugs J1 & J2 with capacity C1 & C2
• Initially J1 has W1 water and J2 has W2 water
– e.g.: full 5 gallon jug and empty 2 gallon jug 

• Possible actions: 
– Pour from jug X to jug Y until X empty or Y full
– Empty jug X onto the floor

• Goal: J1 has G1 water and J2 G2
– G1 or G2 can be -1 to represent any amount

• E.g.: initially full jugs with capacities 3 and 1 
liters, goal is to have 1 liter in each

https://en.wikipedia.org/wiki/Water_pouring_puzzle


So…

• How can we represent the states?
• What an initial state
• How do we recognize a goal state
• What are the actions; how can we tell which 

ones can be performed in a given state; what 
is the resulting state

• How do we search for a solution from an 
initial state given a goal state

• What is a solution? The goal state achieved or 
a path to it?



Search in a state space
• Basic idea:
–Create representation of initial state
–Try all possible actions & connect states that result
–Recursively apply process to the new states until we 

find a solution or dead ends

•We need to keep track of the connections 
between states and might use a
–Tree data structure or
–Graph data structure

• A graph structure is best in general…



Search in a state space

Tree model of space Graph model of space

Consider a water jug problem with a 3-liter and 1-liter jug, an 
initial state of (3,1) and a goal stage of (1,1)

graph model avoids redundancy and loops and is usually preferred



Formalizing state space search

• A state space is a graph (V, E) where V is a set 
of nodes and E is a set of arcs, and each arc is 
directed from a node to another node
• Nodes: data structures with state description 

and other info, e.g., node’s parent, name of 
action that generated it from parent, etc.
• Arcs: instances of actions, head is a state, tail 

is the state that results from action



Formalizing search in a state space
• Each arc has fixed, positive cost associated 

with it corresponding to the action cost
– Simple case: all costs are 1

• Each node has a set of successor nodes
corresponding to all legal actions that can be 
applied at node’s state
– Expanding a node = generating its successor nodes and 

adding them and their associated arcs to the graph

• One or more nodes are marked as start nodes
• A goal test predicate is applied to a state to 

determine if its associated node is a goal node



Example: Water Jug Problem

• Two jugs J1 and J2 with capacity C1 and C2
• Initially J1 has W1 water and J2 has W2 water
– e.g.: a full 5-gallon jug and an empty 2-gallon jug 

• Possible actions: 
– Pour from jug X to jug Y until X empty or Y full
– Empty jug X onto the floor

• Goal: J1 has G1 water and J2 G2
– G1 or G0 can be -1 to represent any amount

5 2



Example: Water Jug Problem

Given full 5-gal. jug and 
empty 2-gal. jug, fill 2-
gal jug with one gallon
• State representation?
–General state?
–Initial state?
–Goal state?
• Possible actions?
–Condition?
–Resulting state?

Name Cond. Transition Effect

Empty5 (x,y)→(0,y) Empty 5G 
jug

Empty2 (x,y)→(x,0)
Empty 2G 
jug

2to5 x ≤ 3 (x,2)→(x+2,0) Pour 2G into 
5G

5to2 x ≥ 2 (x,0)→(x-2,2) Pour 5G into 
2G

5to2part y < 2 (1,y)→(0,y+1) Pour partial 
5G into 2G

Action table

5 2



Example: Water Jug Problem

Given full 5-gal. jug 
and empty 2-gal. jug, 
fill 2-gal jug with one 
gallon
•State = (x,y), where x is 
water in jug 1; y is water 
in jug 2
• Initial State = (5,0) 
•Goal State = (-1,1), where 
-1 means any amount 

Name Cond. Transition Effect

dump1 x>0 (x,y)→(0,y) Empty Jug 1

dump2 y>0 (x,y)→(x,0) Empty Jug 2

pour_1_2
x>0 &
y<C2

(x,y)→(x-D,y+D)
D = min(x,C2-y)

Pour from Jug 
1 to Jug 2

pour_2_1
y>0 &
X<C1

(x,y)→(x+D,y-D)
D = min(y,C1-x)

Pour from Jug 
2 to Jug 1

Action table

5 2



Formalizing search

• Solution: sequence of actions associated with 
a path from a start node to a goal node

• Solution cost: sum of the arc costs on the 
solution path
– If all arcs have same (unit) cost, then 

solution cost is length of solution (number 
of steps)
–Algorithms generally require that arc costs 

cannot be negative (why?)



Formalizing search
• State-space search: searching through state space for 

solution by making explicit a portion of an implicit
state-space graph to find a goal node
– Can’t materializing whole space for large problems 
– Initially V={S}, where S is the start node, E={}
– On expanding S, its successor nodes are generated and 

added to V and associated arcs added to E
– Process continues until a goal node is found
• Nodes represent a partial solution path (+ cost of 

partial solution path) from S to the node 
– From a node there may be many possible paths (and thus 

solutions) with this partial path as a prefix



State-space search algorithm
;; problem describes the start state, operators, goal test, and operator costs
;; queueing-function is a comparator function that ranks two states
;; general-search returns either a goal node or failure

function general-search (problem, QUEUEING-FUNCTION)
nodes = MAKE-QUEUE(MAKE-NODE(problem.INITIAL-STATE))
loop

if EMPTY(nodes) then return "failure"
node = REMOVE-FRONT(nodes)
if problem.GOAL-TEST(node.STATE) succeeds

then return node
nodes = QUEUEING-FUNCTION(nodes, EXPAND(node,

problem.OPERATORS))
end

;; Note: The goal test is NOT done when nodes are generated
;; Note: This algorithm does not detect loops



Key procedures to be defined

• EXPAND
– Generate  a node’s successor nodes, adding them to the 

graph if not already there

• GOAL-TEST
– Test if state satisfies all goal conditions

•QUEUEING-FUNCTION
– Maintain ranked list of nodes that are candidates for 

expansion
– Changing definition of the QUEUEING-FUNCTION leads to 

different search strategies



Informed vs. uninformed search

Uninformed search strategies (blind search)
–Use no information about likely direction of a goal
–Methods: breadth-first, depth-first, depth-limited, 

uniform-cost, depth-first iterative deepening, 
bidirectional

Informed search strategies (heuristic search)
–Use information about domain to (try to) (usually) 

head in the general direction of goal node(s)
–Methods: hill climbing, best-first, greedy search, 

beam search, algorithm A, algorithm A*

https://en.wikipedia.org/wiki/Heuristic


Evaluating search strategies
• Completeness
– Guarantees finding a solution whenever one exists

• Time complexity (worst or average case)
– Usually measured by number of nodes expanded

• Space complexity
– Usually measured by maximum size of graph/tree

during the search

• Optimality/Admissibility
– If a solution is found, is it guaranteed to be an 

optimal one, i.e., one with minimum cost



Example of uninformed search strategies

S

CBA

D GE

3 1 8

15 20 5
3
7

Consider this search space where S is the start 
node and G is the goal. Numbers are arc costs. 



Classic uninformed search methods

• The four  classic uninformed search methods
–Breadth first search (BFS)
–Depth first search (DFS)
–Uniform cost search (generalization of BFS)
– Iterative deepening (blend of DFS and BFS)

• To which we can add another technique
–Bi-directional search (hack on BFS)



Breadth-First Search
• Enqueue nodes in FIFO (first-in, first-out) order
• Complete
• Optimal (i.e., admissible) finds shorted path, 

which is optimal if all operators have same cost
• Exponential time and space complexity, O(bd), 

where d is depth of solution; b is branching 
factor (i.e., # of children)
• Takes a long time to find solutions with large 

number of steps because must explore all 
shorter length possibilities first 



Breadth-First Search
Expanded node  Nodes list (aka Fringe)

{ S0 }
S0 { A3 B1 C8 }
A3 { B1 C8 D6 E10 G18 }   
B1 { C8 D6 E10 G18 G21 }
C8 { D6 E10 G18 G21 G13 }         
D6 { E10 G18 G21 G13 }   
E10 { G18 G21 G13 }     
G18 { G21 G13 }

Note: we typically don’t check for goal until we expand node
Solution path found is S A G , cost 18
Number of nodes expanded (including goal node) = 7

Notation

G18

G is node; 18 is 
cost of shortest 

known path from  

start node S

weighted arcs



Breadth-First Search
Long time to find solutions with many steps: we 
must look at all shorter length possibilities first
• Complete search tree of depth d where nodes have b 

children has 1 + b + b2 + ... + bd = (b(d+1) - 1)/(b-1) 
nodes = 0(bd)
• Tree of depth 12 with branching 10 has more than 

a trillion nodes
• If BFS expands 1000 nodes/sec and nodes uses 100 

bytes, then it may take 35 years to run and uses 
111 terabytes of memory!



Depth-First (DFS)
• Enqueue nodes on nodes in LIFO (last-in, first-out) 

order, i.e.,  use stack data structure to order nodes
• May not terminate w/o depth bound, i.e., ending 

search below fixed depth D (depth-limited search)
• Not complete (with or w/o cycle detection, with or 

w/o a cutoff depth) 
• Exponential time, O(bd), but linear space, O(bd)
• Can find long solutions quickly if lucky (and short 

solutions slowly if unlucky!)
• On reaching deadend, can only back up one level 

at a time even if problem occurs because of a bad 
choice at top of tree 



Depth-First Search 
Expanded node  Nodes list

{ S0 }
S0 { A3 B1 C8 }
A3 { D6 E10 G18 B1 C8 }    
D6 { E10 G18 B1 C8 }
E10 { G18 B1 C8 }               
G18 { B1 C8 } 

Solution path found is S A G, cost 18
Number of nodes expanded (including goal node) = 5



Uniform-Cost Search (UCS)
• Enqueue nodes by path cost. i.e., let g(n) = cost of 

path from start to current node n. Sort nodes by 
increasing value of g(n). 

• Also called Dijkstra’s Algorithm, similar to Branch 
and Bound Algorithm from operations research

• Complete (*)
• Optimal/Admissible (*)

Depends on goal test being applied when node is removed 
from nodes list, not when its parent node is expanded & 
node first generated 

• Exponential time and space complexity, O(bd) 

https://en.wikipedia.org/wiki/Edsger_W._Dijkstra


Uniform-Cost Search 
Expanded node  Nodes list

{ S0 }
S0 { B1 A3 C8 }
B1 { A3 C8 G21 }
A3 { D6 C8 E10 G18 G21 }
D6 { C8 E10 G18 G21 }
C8 { E10 G13 G18 G21 }       
E10 { G13 G18 G21 }
G13 { G18 G21 }                             

Solution path found is S C G, cost 13
Number of nodes expanded (including goal node) = 7



Depth-First Iterative Deepening (DFID)
• Do DFS to depth 0, then (if no solution) DFS to 

depth 1, etc.
• Usually used with a tree search
• Complete 
• Optimal/Admissible if all operators have unit 

cost, else finds shortest solution (like BFS)
• Time complexity a bit worse than BFS or DFS

Nodes near top of search tree generated many times, 
but since almost all nodes are near tree bottom, 
worst case time complexity still exponential, O(bd) 



• If branching factor is b and solution is at depth d, 
then nodes at depth d are generated once, nodes 
at depth d-1 are generated twice, etc. 
–Hence bd + 2b(d-1) + ... + db <= bd / (1 - 1/b)2 = O(bd). 
– If b=4, worst case is 1.78 * 4d, i.e., 78% more nodes 

searched than exist at depth d (in worst case)
• Linear space complexity, O(bd), like DFS 
• Has advantages of BFS (completeness) and DFS 

(i.e., limited space, finds longer paths quickly) 
• Preferred for large state spaces where solution 

depth is unknown

Depth-First Iterative Deepening (DFID)



How they perform
• Depth-First Search:

– 4 Expanded nodes: S A D E G 
– Solution found: S A G (cost 18)

• Breadth-First Search: 
– 7 Expanded nodes: S A B C D E G 
– Solution found: S A G (cost 18)

• Uniform-Cost Search: 
– 7 Expanded nodes: S A D B C E G 
– Solution found: S C G (cost 13)
Only uninformed search that worries about costs

• Iterative-Deepening Search: 
– 10 nodes expanded: S S A B C S A D E G 
– Solution found: S A G (cost 18)



Searching Backward from Goal

• Usually a successor function is reversible
– i.e., can generate a node’s predecessors in graph

• If we know a single goal (rather than a goal’s  
properties), we could search backward to the 
initial state

• It might be more efficient
– Depends on whether the graph fans in or out



Bi-directional search

•Alternate searching from the start state toward the goal 
and from the goal state toward the start
• Stop when the frontiers intersect
•Works well only when there are unique start & goal states
• Requires ability to generate “predecessor” states
• Can (sometimes) lead to finding a solution more quickly



Comparing Search Strategies 


