
Machine Learning:
Decision Trees in

AIMA, WEKA
and SCIKIT-LEARN

http://archive.ics.uci.edu/ml

•Est. 1987!
•370 data sets

http://archive.ics.uci.edu/ml/datasets/Zoo

http://archive.ics.uci.edu/ml/datasets/Zoo

Zoo training data
1) animal name: string

2) hair: Boolean

3) feathers: Boolean

4) eggs: Boolean

5) milk: Boolean

6) airborne: Boolean

7) aquatic: Boolean

8) predator: Boolean

9) toothed: Boolean

10) backbone: Boolean

11) breathes: Boolean

12) venomous: Boolean

13) fins: Boolean

14) legs: {0,2,4,5,6,8}

15) tail: Boolean

16) domestic: Boolean

17) catsize: Boolean

18) type: {mammal, fish,
bird, shellfish, insect,
reptile, amphibian}

101 Instances
aardvark,1,0,0,1,0,0,1,1,1,1,0,0,4,0,0,1,mammal
antelope,1,0,0,1,0,0,0,1,1,1,0,0,4,1,0,1,mammal
bass,0,0,1,0,0,1,1,1,1,0,0,1,0,1,0,0,fish
bear,1,0,0,1,0,0,1,1,1,1,0,0,4,0,0,1,mammal
boar,1,0,0,1,0,0,1,1,1,1,0,0,4,1,0,1,mammal
buffalo,1,0,0,1,0,0,0,1,1,1,0,0,4,1,0,1,mammal
calf,1,0,0,1,0,0,0,1,1,1,0,0,4,1,1,1,mammal
carp,0,0,1,0,0,1,0,1,1,0,0,1,0,1,1,0,fish
catfish,0,0,1,0,0,1,1,1,1,0,0,1,0,1,0,0,fish
cavy,1,0,0,1,0,0,0,1,1,1,0,0,4,0,1,0,mammal
cheetah,1,0,0,1,0,0,1,1,1,1,0,0,4,1,0,1,mammal
chicken,0,1,1,0,1,0,0,0,1,1,0,0,2,1,1,0,bird
chub,0,0,1,0,0,1,1,1,1,0,0,1,0,1,0,0,fish
clam,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,shellfish
crab,0,0,1,0,0,1,1,0,0,0,0,0,4,0,0,0,shellfish
…

category
label

Zoo example
aima-python> python
>>> from learning import *
>>> zoo
<DataSet(zoo): 101 examples, 18 attributes>
>>> dt = DecisionTreeLearner()
>>> dt.train(zoo)
>>> dt.predict(['shark',0,0,1,0,0,1,1,1,1,0,0,1,0,1,0,0]) #eggs=1
'fish'
>>> dt.predict(['shark',0,0,0,0,0,1,1,1,1,0,0,1,0,1,0,0]) #eggs=0
'mammal�

Zoo example

>> dt.dt
DecisionTree(13, 'legs', {0: DecisionTree(12, 'fins', {0:
DecisionTree(8, 'toothed', {0: 'shellfish', 1: 'reptile'}), 1:
DecisionTree(3, 'eggs', {0: 'mammal', 1: 'fish'})}), 2:
DecisionTree(1, 'hair', {0: 'bird', 1: 'mammal'}), 4:
DecisionTree(1, 'hair', {0: DecisionTree(6, 'aquatic', {0:
'reptile', 1: DecisionTree(8, 'toothed', {0: 'shellfish', 1:
'amphibian'})}), 1: 'mammal'}), 5: 'shellfish', 6:
DecisionTree(6, 'aquatic', {0: 'insect', 1: 'shellfish'}), 8:
'shellfish'})

Zoo example
>>> dt.dt.display()
Test legs
legs = 0 ==> Test fins

fins = 0 ==> Test toothed
toothed = 0 ==> RESULT = shellfish
toothed = 1 ==> RESULT = reptile

fins = 1 ==> Test eggs
eggs = 0 ==> RESULT = mammal
eggs = 1 ==> RESULT = fish

legs = 2 ==> Test hair
hair = 0 ==> RESULT = bird
hair = 1 ==> RESULT = mammal

legs = 4 ==> Test hair
hair = 0 ==> Test aquatic

aquatic = 0 ==> RESULT = reptile
aquatic = 1 ==> Test toothed

toothed = 0 ==> RESULT = shellfish
toothed = 1 ==> RESULT = amphibian

hair = 1 ==> RESULT = mammal
legs = 5 ==> RESULT = shellfish
legs = 6 ==> Test aquatic

aquatic = 0 ==> RESULT = insect
aquatic = 1 ==> RESULT = shellfish

legs = 8 ==> RESULT = shellfish

legs

fins

hair

hair aquadicshellfish

shellfish0

2 4 5 6

8

eggs tooth

mammal

fish

shellfish

reptile

0 1 0 1

1
0

mammal

bird

0

1

aquadic

tooth

shellfish

reptile

0
1

reptile

0

0 1

shellfish

insect
0

1

Zoo example
>>> dt.dt.display()
Test legs
legs = 0 ==> Test fins

fins = 0 ==> Test toothed
toothed = 0 ==> RESULT = shellfish
toothed = 1 ==> RESULT = reptile

fins = 1 ==> Test milk
milk = 0 ==> RESULT = fish
milk = 1 ==> RESULT = mammal

legs = 2 ==> Test hair
hair = 0 ==> RESULT = bird
hair = 1 ==> RESULT = mammal

legs = 4 ==> Test hair
hair = 0 ==> Test aquatic

aquatic = 0 ==> RESULT = reptile
aquatic = 1 ==> Test toothed

toothed = 0 ==> RESULT = shellfish
toothed = 1 ==> RESULT = amphibian

hair = 1 ==> RESULT = mammal
legs = 5 ==> RESULT = shellfish
legs = 6 ==> Test aquatic

aquatic = 0 ==> RESULT = insect
aquatic = 1 ==> RESULT = shellfish

legs = 8 ==> RESULT = shellfish

After adding the
shark example
to the training
data & retraining

Weka
• Open-source Java machine learning tool

• http://www.cs.waikato.ac.nz/ml/weka/

• Implements many classifiers & ML algorithms

• Uses common data representation format;

easy to try different ML algorithms and

compare results

• Comprehensive set of data pre-processing

tools and evaluation methods

• Three modes of operation: GUI, command

line, Java API
10

http://www.cs.waikato.ac.nz/ml/weka/

@relation heart-disease-simplified

@attribute age numeric
@attribute sex { female, male }
@attribute chest_pain_type { typ_angina, asympt, non_anginal, atyp_angina}
@attribute cholesterol numeric
@attribute exercise_induced_angina {no, yes}
@attribute class {present, not_present}

@data
63,male,typ_angina,233,no,not_present
67,male,asympt,286,yes,present
67,male,asympt,229,yes,present
38,female,non_anginal,?,no,not_present
...

Common .arff* data format
Numeric attribute

Nominal attribute

Training data

*ARFF = Attribute-Relation File Format

Weka demo

13

Install Weka
•Download and install Weka
•cd to your weka directory
•Invoke the GUI interface or call components

from the command line
– You will probably want to set environment

variables (e.g., CLASSPATH) or aliases (e.g.,
weka)

Open Weka app

• cd /Applications/weka
java -jar weka.jar

• Available apps opti-
mized for different
tasks

• Start with Explorer

Explorer Interface

Starts with Data Preprocessing;
open file to load data

Load restaurant.arff training data

We can inspect/remove features

Select classify then J48

Adjust parameters & training
options; click start to train

See the training results

Compare results

HowCrowded = None: No (2.0)
HowCrowded = Some: Yes (4.0)
HowCrowded = Full
| Hungry = Yes
| | IsFridayOrSaturday = Yes
| | | Price = $: Yes (2.0)
| | | Price = $$: Yes (0.0)
| | | Price = $$$: No (1.0)
| | IsFridayOrSaturday = No: No (1.0)
| Hungry = No: No (2.0)

J48 pruned tree: nodes:11;
leaves:7, max depth:4

ID3 tree: nodes:12; leaves:8,
max depth:4

scikit-learn
•Popular open source ML and data analysis

tools for Python
•Built on NumPy, SciPy, and matplotlib for

efficiency
•However decision tree tools are a weak area

– E.g., data features must be numeric, so working
with restaurant example requires conversion

– Perhaps because DTs not used for large problems

•We’ll look at using it to learn a DT for the
classic iris flower dataset

https://scikit-learn.org/stable/
https://www.numpy.org/
https://www.scipy.org/
https://matplotlib.org/
https://en.wikipedia.org/wiki/Iris_flower_data_set

50 samples from each of three species of Iris (setosa, virginica,
versicolor) with four data features length and width of the
sepals and petals in centimeters

Scikit
DT

from sklearn import tree, datasets
import graphviz, pickle
iris = datasets.load_iris()
clf = tree.DecisionTreeClassifier()
clf = clf.fit(iris.data, iris.target)
pickle.dump(clf, open(‘iris.p’, ‘wb’))
tree.export_graphviz(clf, out_file=“iris.pdf”)

http://bit.ly/iris471

http://bit.ly/iris471

Weka vs. scikit-learn vs. …
•Weka: good for experimenting with many ML

algorithms
–Other tools are more efficient &scalable

•Scikit-learn: popular and efficient suite of open-
source machine-learning tools in Python
–Uses NumPy, SciPy, matplotlib for efficiency
–Preloaded into Google’s Colaboratory

•Custom apps for a specific ML algorithm are
often preferred for speed or features

http://scikit-learn.org/stable/
https://colab.research.google.com/notebooks/welcome.ipynb

