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First-Order Logic



First-order logic
• First-order logic (FOL) models the world in terms of 

– Objects, which are things with individual identities
– Properties of objects that distinguish them from others
– Relations that hold among sets of objects
– Functions, a subset of relations where there is only one 
�value� for any given �input�

• Examples: 
– Objects: Students, lectures, companies, cars ... 
– Relations: Brother-of, bigger-than, outside, part-of, has-

color, occurs-after, owns, visits, precedes, ... 
– Properties: blue, oval, even, large, ... 
– Functions: father-of, best-friend, second-half, more-than 

... 



User provides
• Constant symbols representing individuals in world

– BarackObama, Green, John, 3, “John Smith”

• Predicate symbols, map individuals to truth values

– greater(5,3)

– green(Grass) 

– color(Grass, Green)

– hasBrother(John, Robert)

• Function symbols, map individuals to individuals

– father_of(SashaObama) = BarackObama

– color_of(Sky) = Blue



FOL Provides

•Variable symbols
–E.g., x, y, foo

•Connectives
–Same as propositional logic: not (¬), and 

(Ù), or (Ú), implies (®), iff («)
•Quantifiers

–Universal "x or  (Ax)
–Existential $x or (Ex)



Sentences: built from terms and atoms
•term (denoting a real-world individual) is a 

constant or variable symbol, or n-place function 
of n terms, e.g.:
–Constants: john, umbc
–Variables: x, y, z
–Functions: mother_of(john), phone(mother(x))

•Ground terms have no variables in them
–Ground: john,  father_of(father_of(john))
–Not Ground: father_of(X)



Sentences: built from terms and atoms
•atomic sentences (which are either true or 

false) are an n-place predicate of n terms, e.g.:
–green(Kermit)
–between(Philadelphia, Baltimore, DC)
–loves(X, mother(X))

•complex sentences are formed from atomic 
sentences connected by logical connectives:

¬P, PÚQ, PÙQ, P®Q, P«Q
where P and Q are sentences



What do atomic sentences mean?
•Unary predicates typically encode a types

–Dolphin(flipper): flipper is a kind of dolphin
–Green(kermit): kermit is a kind of green thing
–Integer(x): x is a kind of integer

•Non-unary predicates typically encode relations
–Loves(john, mary)
–Greater_than(2, 1)
–Between(newYork, philadelphia, baltimore)
–hasName(John, “John Smith”)



Ontology
•Designing a logic representation is similar to 

modeling in an object-oriented language
•An ontology is a “formal naming and 

definition of the types, properties and 
relations of entities for a domain of 
discourse”

•See schema.org as for an ontology that’s 
used by search engines to add semantic 
data to web sites

https://en.wikipedia.org/wiki/Ontology
http://schema.org/


Sentences: built from terms and atoms

•quantified sentences adds quantifiers " and $
–"x loves(x, mother(x))
–$x number(x) Ù greater(x, 100), prime(x)

•A well-formed formula (wff) is a sentence 
with no free variables; all variables are bound
by either a universal or existential quantifier

In ("x)P(x, y) x is bound and y is free 



Quantifiers
•Universal quantification

–("x)P(x) means P holds for all values of x in 
domain associated with variable

–E.g., ("x) dolphin(x) ® mammal(x)
•Existential quantification

–($x)P(x) means P holds for some value of x 
in domain associated with variable

–E.g., ($x) mammal(x) Ù lays_eggs(x)
–This lets us make a statement about some 

object without identifying it



Quantifiers (1)

•Universal quantifiers typically used with
implies to form rules:
Logic: ("x) student(x) ® smart(x)
Meaning: All students are smart

•Universal quantification rarely used to make 
statements about every individual in world: 
Logic: ("x) student(x) Ù smart(x)
Meaning: Everything in the world is a student and is 
smart



Quantifiers (2)

•Existential quantifiers usually used with and to 
specify a list of properties about an individual

Logic: ($x) student(x) Ù smart(x)
Meaning: There is a student who is smart

•Common mistake: represent this in FOL as:
Logic: ($x) student(x) ® smart(x) 
Meaning: ?



Quantifiers (2)

•Existential quantifiers usually used with and to 
specify a list of properties about an individual

Logic: ($x) student(x) Ù smart(x)
Meaning: There is a student who is smart

•Common mistake: represent this in FOL as:
Logic: ($x) student(x) ® smart(x) 
P ® Q = ~P v Q
$x student(x) ® smart(x) = $x ~student(x) v smart(x)
Meaning: There’s something that is not a student or 
is smart



Quantifier Scope
• FOL sentences have structure, like programs
• In particular, variables in a sentence have a scope
• For example, suppose we want to say 

– everyone who is alive loves someone
– ("x) alive(x) ® ($y) loves(x,y) 

• Here’s how we scope the variables

("x) alive(x) ® ($y) loves(x,y)

Scope of x
Scope of y



Quantifier Scope
• Switching order of universal quantifiers does not

change the meaning
– ("x)("y)P(x,y) ↔ ("y)("x) P(x,y)
– Dogs hate cats (i.e., all dogs hate all cats)

• You can switch order of existential quantifiers
– ($x)($y)P(x,y) ↔ ($y)($x) P(x,y) 
– A cat killed a dog

• Switching order of universal and existential 
quantifiers does change meaning: 
– Everyone likes someone: ("x)($y) likes(x,y) 
– Someone is liked by everyone: ($y)("x) likes(x,y)



Procedural example 1
def verify1():

# Everyone likes someone: ("x)($y) likes(x,y) 
for p1 in people():

foundLike = False
for p2 in people():

if likes(p1, p2):
foundLike = True
break

if not foundLike:
print(p1, ‘does not like anyone L’)
return False

return True

Every person has at
least one individual that
they like.



Procedural example 2def verify2():
# Someone is liked by everyone: ($y)("x) likes(x,y) 
for p2 in people():

foundHater = False
for p1 in people():

if not likes(p1, p2):
foundHater = True
break

if not foundHater
print(p2, ‘is liked by everyone J’)

return True
return False

There is a person who is
liked by every person in
the universe.



Connections between " and $
• We can relate sentences involving " and $ using 

extensions to  De Morgan’s laws:
1. ("x) ¬P(x) ↔ ¬($x) P(x)
2.¬("x) P(x) ↔ ($x) ¬P(x)
3. ("x) P(x) ↔ ¬ ($x) ¬P(x)
4. ($x) P(x) ↔ ¬("x) ¬P(x)

• Examples
1. All dogs don’t like cats ↔ No dog likes cats
2. Not all dogs bark ↔ There is a dog that doesn’t bark
3. All dogs sleep ↔ There is no dog that doesn’t sleep
4. There is a dog that talks ↔ Not all dogs can’t talk

http://en.wikipedia.org/wiki/De_Morgan's_laws


Notational differences
•Different symbols for and, or, not, implies, ...

–" $ Þ Û Ù Ú ¬ • É
– p v (q ^ r) 
– p + (q * r)

•Prolog
cat(X) :- furry(X), meows (X), has(X, claws)

•Lispy notations
(forall ?x (implies (and (furry ?x) 

(meows ?x) 
(has ?x claws))

(cat ?x)))



Translating English to FOL
Every gardener likes the sun
"x gardener(x) ® likes(x,Sun) 

All purple mushrooms are poisonous
"x (mushroom(x) Ù purple(x)) ® poisonous(x)

No purple mushroom is poisonous (two ways)
¬$x purple(x) Ù mushroom(x) Ù poisonous(x) 
"x  (mushroom(x) Ù purple(x)) ® ¬poisonous(x) 



Translating English to FOL

There are (at least) two purple mushrooms
$x $y mushroom(x) Ù purple(x) Ù mushroom(y) Ù
purple(y) Ù ¬(x=y)

There are exactly two purple mushrooms
$x $y mushroom(x) Ù purple(x) Ù mushroom(y) Ù
purple(y) Ù ¬(x=y) Ù
"z (mushroom(z) Ù purple(z)) ® ((x=z) Ú (y=z)) 

Trump is not short
¬short(Trump) 



Translating English to FOL
What do these mean?

•You can fool some of the people all of the time
$x "t  person(x) Ù time(t) ® can-fool(x, t)
"t $x  person(x) Ù time(t) ® can-fool(x, t)

•You can fool all of the people some of the time
$t "x time(t) Ù person(x) ® can-fool(x, t)
"x $t person(x) Ù time(t) ® can-fool(x, t)



Translating English to FOL
What do these mean?

Both English statements are ambiguous
•You can fool some of the people all of the time

There is a nonempty subset of people so easily 
fooled that you can fool that subset every time*

For any given time, there is a non-empty subset at 
that time that you can fool

•You can fool all of the people some of the time
There are one or more times when it’s possible to 

fool everyone*
Everybody can be fooled at some point in time

* Most common interpretation, I think



Some terms we will need

•person(x): True iff x is a person

•time(t): True iff t is a point in time

•canFool(x, t): True iff x can be fooled at time t

Note: iff =  if and only if  =  ↔



Translating English to FOL
You can fool some of the people all of the time

There is a nonempty group of people so easily fooled 
that you can fool that group every time*

≡ There’s a person that you can fool every time
$x "t  person(x) Ù time(t) ® canFool(x, t)

For any given time, there is a non-empty group at 
that time that you can fool

≡ For every time, there is a person at that time that 
you can fool

"t $x  person(x) Ù time(t) ® canFool(x, t)
* Most common interpretation, I think



Translating English to FOL
You can fool all of the people some of the time

There are one or more times when it’s possible to 
fool everyone*

$t "x time(t) Ù person(x) ® canFool(x, t)

Everybody can be fooled at some point in time
"x $t person(x) Ù time(t) ® canFool(x, t)

* Most common interpretation, I think



Simple genealogy KB in FOL

Design a knowledge base using FOL that

•Has facts of immediate family relations, e.g., 
spouses, parents, etc.

• Defines of more complex relations (ancestors, 
relatives)
• Detect conflicts, e.g., you are your own 
parent
• Infers relations, e.g., grandparent from parent
• Answers queries about relationships between 
people



How do we approach this?
•Design an initial ontology of types, e.g.

– e.g., person, man, woman, male, female
•Extend ontology by defining relations, e.g.

– spouse, has_child, has_parent
•Add general constraints to relations, e.g.

– spouse(X,Y) => ~ X = Y
– spouse(X,Y) => person(X), person(Y)

•Add FOL sentences for inference, e.g.
– spouse(X,Y) ó spouse(Y,X)
– man(X) ó person(X) �male(X)



Example: A simple genealogy KB by FOL
•Predicates:

– parent(x, y), child(x, y), father(x, y), daughter(x, y), 
etc.

– spouse(x, y), husband(x, y), wife(x,y)
– ancestor(x, y), descendant(x, y)
– male(x), female(y)
– relative(x, y)

•Facts:
– husband(Joe, Mary), son(Fred, Joe)
– spouse(John, Nancy), male(John), son(Mark, Nancy)
– father(Jack, Nancy), daughter(Linda, Jack)
– daughter(Liz, Linda)
– etc.



Example Axioms
("x,y) parent(x, y) ↔ child (y, x)
("x,y) father(x, y) ↔ parent(x, y) Ù male(x) ;similar for mother(x, y)
("x,y) daughter(x, y) ↔ child(x, y) Ù female(x) ;similar for son(x, y)
("x,y) husband(x, y) ↔ spouse(x, y) Ù male(x) ;similar for wife(x, y)
("x,y) spouse(x, y) ↔ spouse(y, x)  ;spouse relation is symmetric
("x,y) parent(x, y) ® ancestor(x, y) 
("x,y)($z) parent(x, z) Ù ancestor(z, y) ® ancestor(x, y) 
("x,y) descendant(x, y) ↔ ancestor(y, x) 
("x,y)($z) ancestor(z, x) Ù ancestor(z, y) ® relative(x, y)
("x,y) spouse(x, y) ® relative(x, y)  ;related by marriage
("x,y)($z) relative(z, x) Ù relative(z, y) ® relative(x, y)  ;transitive
("x,y) relative(x, y) ↔ relative(y, x) ;symmetric



Axioms, definitions and theorems
• Axioms: facts and rules that capture (important) facts 

& concepts in a domain; axioms are used to prove 

theorems
– Mathematicians dislike unnecessary (dependent) axioms, i.e. 

ones that can be derived from others

– Dependent axioms can make reasoning faster, however

– Choosing a good set of axioms is a design problem

• A definition of a predicate is of the form �p(X) ↔ …�
and can be decomposed into two parts

– Necessary description: �p(x) ® …�

– Sufficient description �p(x) ¬ …�

– Some concepts have definitions (e.g., triangle) and some don’t 

(e.g., person)



More on definitions
Example: define father(x, y) by parent(x, y) and 
male(x)
• parent(x, y) is a necessary (but not sufficient) 

description of father(x, y)
father(x, y) ® parent(x, y)

• parent(x, y) ^ male(x) ^ age(x, 35) is a sufficient (but 
not necessary) description of father(x, y):

father(x, y) ¬ parent(x, y) ^ male(x) ^ age(x, 35) 
• parent(x, y) ^ male(x) is a necessary and sufficient 

description of father(x, y) 
parent(x, y) ^ male(x) ↔ father(x, y)



More on definitions

P(x)

S(x)

S(x) is a 
necessary 
condition of P(x)

# all Ps are Ss
("x) P(x) => S(x)

S(x)

P(x)

S(x) is a 
sufficient 
condition of P(x)

# all Ps are Ss
("x) P(x) <= S(x)

P(x)

S(x)

S(x) is a 
necessary and 
sufficient 
condition of P(x)

# all Ps are Ss
# all Ss are Ps
("x) P(x) <=> S(x)



Higher-order logic
•FOL only lets us quantify over variables, and 

variables can only range over objects 
•HOL allows us to quantify over relations, e.g.
�two functions are equal iff they produce the same 

value for all arguments�
"f "g (f = g) « ("x f(x) = g(x))

•E.g.: (quantify over predicates)
"r transitive( r ) ® ("xyz) r(x,y) Ù r(y,z) ® r(x,z)) 

•More expressive, but reasoning is  undecide-
able, in general



Expressing uniqueness
• Often want to say that there is a single, unique 

object that satisfies a condition
• There exists a unique x such that king(x) is true 

– $x king(x) Ù "y (king(y) ® x=y)
– $x king(x) Ù ¬$y (king(y) Ù x¹y)
– $! x king(x) 

• Every country has exactly one ruler
– "c country(c) ®$! r ruler(c,r) 

• Iota operator: i x P(x) means �the unique x such 
that p(x) is true�
– The unique ruler of Freedonia is dead
– dead(i x ruler(freedonia,x))

syntactic
sugar

http://en.wikipedia.org/wiki/Syntactic_sugar


Examples of FOL in use
•Semantics of W3C’s Semantic Web stack 

(RDF, RDFS, OWL) is defined in FOL

•OWL Full is equivalent to FOL

•Other OWL profiles support a subset of FOL 
and are more efficient

•The semantics of schema.org is only defined 
in natural language text

•Wikidata’s knowledge graph (and Google’s) 
has a richer schema
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https://en.wikipedia.org/wiki/Semantic_Web
https://en.wikipedia.org/wiki/Web_Ontology_Language
http://schema.org/
https://www.wikidata.org/


FOL Summary
•First order logic (FOL) introduces predicates, 

functions and quantifiers

•More expressive, but reasoning more complex
– Reasoning in propositional logic is NP hard, FOL is 

semi-decidable

•Common AI knowledge representation language
– Other KR languages (e.g., OWL) are often defined by 

mapping them to FOL

•FOL variables range over objects
– HOL variables range over functions, predicates or 

sentences

http://en.wikipedia.org/wiki/Web_Ontology_Language

