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Today’s topics
• Goal-based agents
• Representing states and actions
• Example problems
• Generic state-space search algorithm
• Specific algorithms
– Breadth-first search
– Depth-first search
– Uniform cost search
– Depth-first iterative deepening

• Example problems revisited



Big Idea
Allen Newell and Herb Simon developed
the problem space principle as an AI
approach in the late 60s/early 70s

"The rational activity in which people engage to solve a 
problem can be described in terms of (1) a set of states
of knowledge, (2) operators for changing one state into 
another, (3) constraints on applying operators and (4) 
control knowledge for deciding which operator to apply 
next."

Newell A & Simon H A. Human problem solving.
Englewood Cliffs, NJ: Prentice-Hall. 1972. 

https://en.wikipedia.org/wiki/Allen_Newell
https://en.wikipedia.org/wiki/Herbert_A._Simon


BTW
• Herb Simon was a polymath who

contributed to economics, cognitive
science, management, computer science and 
many other fields 

• He was awarded a Nobel Prize in 1978 “for his 
pioneering research into the decision-making 
process within economic organizations”

• He is the only computer scientist to have won 
a Nobel  Prize

https://en.wikipedia.org/wiki/Herbert_A._Simon


Example: 8-Puzzle
Given an initial configuration of 8 numbered 
tiles on a 3x3 board, move the tiles in such a 
way so as to produce a desired goal 
configuration of the tiles. 



Simpler: 3-Puzzle
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Building goal-based agents
We must answer the following questions
–How do we represent the state of the “world”?
–What is the goal and how can we recognize it
–What are the possible actions?
–What relevant information do we encoded to 

describe the state and available transitions, and solve 
the problem? 

initial state goal state



What is the goal to be achieved?
• Can describe a situation we want to achieve, a 

set of properties that we want to hold, etc. 
• Requires defining a goal test, so we know 

what it means to have achieved/satisfied goal
• A hard question, rarely tackled in AI; usually 

assume system designer or user specifies goal
• Psychologists and motivational speakers 

stress importance of establishing clear goals 
as a first step towards solving a problem

• What are your goals???



What are the actions?
• Characterize primitive actions for making 

changes in the world to achieve a goal
• Deterministic world: no uncertainty in an 

action’s effects (simple model)
• Given action and description of current 

world state, action completely specifies 
– Whether action can be applied to the current 

world (i.e., is it applicable and legal?) and 
– What state results after action is performed in 

the current world (i.e., no need  for history 
information to compute  the next state)



Representing actions
• Actions can be considered as discrete events

that occur at an instant of time, e.g.:
If “In class� and perform action �go home,� then next state is 
�at home.� There’s no time where you’re neither in class nor 
at home (i.e., in the state of �going home�)

• Number of actions/operators depends on the 
representation used in describing a state
– 8-puzzle: specify 4 possible moves for each of the 8 

tiles, resulting in a total of 4*8=32 operators
– Or, we could specify four moves for �blank� square 

and we only need 4 operators
• Representational shift can simplify a problem!



Representing states
• What information is necessary to describe 

all relevant aspects to solving the goal? 

• Size of a problem usually described in 
terms of possible number of states
– Tic-Tac-Toe has about 39 states (19,683≈2*104)
– Checkers has about 1040 states

– Rubik’s Cube has about 1019 states
– Chess has about 10120 states in a typical game

– Go has 2*10170

– Theorem provers may deal with an infinite space

• State space size ≈ solution difficulty



Representing states

• State space size ≈ solution difficulty
• Our estimates were loose upper 

bounds
• How many legal states does tic-tac-

toe really have? 



Representing states
• Our estimates were loose upper bounds
• How many possible, legal states does tic-

tac-toe really have?
• Simple upper bound: nine board cells, each 

of which can be empty, O or X, so 39

• Only 593 states after eliminating
– impossible states

– Rotations and reflections X

X

X X



Some example problems

• Toy problems and micro-worlds
–8-Puzzle
–Missionaries and Cannibals
–Cryptarithmetic
–Remove 5 Sticks
–Water Jug Problem

• Real-world problems



8-Puzzle
Given an initial configuration of 8 numbered tiles on 
a 3x3 board, move the tiles in such a way so as to 
produce a desired goal configuration of the tiles. 

What are the states, goal test, actions?



8 puzzle

• State: 3x3 array of the tiles on the board
• Actions: Move blank square left, right, up or 

down
More efficient encoding than one with 4 possible 
moves for each of 8 distinct tiles

• Initial State: A given board configuration 
• Goal: A given board configuration



15 puzzle
•Popularized, but not 

invented by, Sam Loyd
• In late 1800s he offered 

$1000 to all who could 
find a solution
•He sold many puzzles
• Its states form two 

disjoint spaces
•There was no path to 

the solution from his 
initial state!

http://en.wikipedia.org/wiki/15_puzzle
http://en.wikipedia.org/wiki/Sam_Loyd


The 8-Queens Puzzle 

Place eight queens 
on a chessboard 
such that no queen 
attacks any other

We can generalize 
the problem to a 
NxN chessboard

What are the states, goal test, actions?

http://en.wikipedia.org/wiki/Eight_queens_puzzle


Route Planning
Find a route from Arad to Bucharest

A simplified map of major roads in Romania used in our text



Example: Water Jug Problem

• Two jugs J1 and J2 with capacity C1 and C2
• Initially J1 has W1 water and J2 has W2 water
– e.g.: a full 5 gallon jug and an empty 2 gallon jug 

• Possible actions: 
– Pour from jug X to jug Y until X empty or Y full
– Empty jug X onto the floor

• Goal: J1 has G1 water and J2 G2
– G1 or G0 can be -1 to represent any amount

• E.g.: initially full jugs with capacities 3 and 1 
liters, goal is to have 1 liter in each



So…
• How can we represent the states?
• What an initial state
• How do we recognize a goal state
• What are the actions; how can we tell which 

ones can be performed in a given state; what 
is the resulting state

• How do we search for a solution from an 
initial state given a goal state

• What is a solution? The goal state achieved or 
a path to it?



Search in a state space
• Basic idea:
–Create representation of initial state
–Try all possible actions & connect states that result
–Recursively apply process to the new states until we 

find a solution or dead ends
•We need to keep track of the connections 

between states and might use a
–Tree data structure or
–Graph data structure

• A graph structure is best in general…



Search in a state space

Tree model of space Graph model of space

Consider a water jug problem with a 3-liter and 1-liter jug, an 
initial state of (3,1) and a goal stage of (1,1)

graph model avoids redundancy and loops and is usually preferred



Formalizing search in a state space
• A state space is a graph (V, E) where V is a set 

of nodes and E is a set of arcs, and each arc is 
directed from a node to another node
• Nodes are data structures with a state des-

cription and other info, e.g., node’s parent, 
name of action that generated it from 
parent, etc.
• Arcs are instances of actions. When opera-

tor is applied to state at its source node, then 
resulting state is arc’s destination node



Formalizing search in a state space
• Each arc has fixed, positive cost associated 

with it corresponding to the operator cost
– Simple case: all costs are 1

• Each node has a set of successor nodes
corresponding to all legal actions that can be 
applied at node’s state
– Expanding a node = generating its successor nodes and 

adding them and their associated arcs to the graph

• One or more nodes are marked as start nodes
• A goal test predicate is applied to a state to 

determine if its associated node is a goal node



Example: Water Jug Problem

• Two jugs J1 and J2 with capacity C1 and C2
• Initially J1 has W1 water and J2 has W2 water
– e.g.: a full 5 gallon jug and an empty 2 gallon jug 

• Possible actions: 
– Pour from jug X to jug Y until X empty or Y full
– Empty jug X onto the floor

• Goal: J1 has G1 water and J2 G2
– G1 or G0 can be -1 to represent any amount



Example: Water Jug Problem
Given full 5 gallon jug 
and an empty 2 gallon 
jug, goal is to fill 2 
gallon jug with exactly 
one gallon
• State representation?
–General state?
–Initial state?
–Goal state?
• Possible actions?
–Condition?
–Resulting state?

Name Cond. Transition Effect

Empty5 (x,y)→(0,y) Empty 5G 
jug

Empty2 (x,y)→(x,0)
Empty 2G 
jug

2to5 x ≤ 3 (x,2)→(x+2,0) Pour 2G into 
5G

5to2 x ≥ 2 (x,0)→(x-2,2) Pour 5G into 
2G

5to2part y < 2 (1,y)→(0,y+1) Pour partial 
5G into 2G

Action table



Example: Water Jug Problem
Given full 5 gallon jug 
and an empty 2 gallon 
jug, goal is to fill 2 
gallon jug with exactly 
one gallon
–State = (x,y), where x is 

water in jug 1 and y is 
water in jug 2
–Initial State = (5,0) 
–Goal State = (-1,1), 

where -1 means any 
amount 

Name Cond. Transition Effect

dump1 x>0 (x,y)→(0,y) Empty Jug 1

dump2 y>0 (x,y)→(x,0) Empty Jug 2

pour_1_2
x>0 &
y<C2

(x,y)→(x-D,y+D)
D = min(x,C2-y)

Pour from Jug 
1 to Jug 2

pour_2_1
y>0 &
X<C1

(x,y)→(x+D,y-D)
D = min(y,C1-x)

Pour from Jug 
2 to Jug 1

Action table



Class Exercise
• Representing a 2x2 Sudoku puzzle as a 

search space
• Fill in the grid so that every row, every 

column, and every 2x2 box contains the 
digits 1 through 4
–What are the states?
–What are the actions?
–What are the constraints

on actions?
–What is the description

of the goal state?

3

1

3

2

http://en.wikipedia.org/wiki/Sudoku


Formalizing search (3)
• Solution: sequence of actions associated with 

a path from a start node to a goal node
• Solution cost: sum of the arc costs on the 

solution path
– If all arcs have same (unit) cost, then 

solution cost is just the length of solution 
(number of steps / state transitions)
–Algorithms generally require that arc costs 

cannot be negative (why?)



Formalizing search (4)
• State-space search: searching through state space for 

solution by making explicit a sufficient portion of an 
implicit state-space graph to find a goal node
– Can’t materializing whole space for large problems 
– Initially V={S}, where S is the start node, E={}
– On expanding S, its successor nodes are generated and 

added to V and associated arcs added to E
– Process continues until a goal node is found
• Nodes represent a partial solution path (+ cost of 

partial solution path) from S to the node 
– From a node there may be many possible paths (and thus 

solutions) with this partial path as a prefix



State-space search algorithm
;; problem describes the start state, operators, goal test, and operator costs
;; queueing-function is a comparator function that ranks two states
;; general-search returns either a goal node or failure

function general-search (problem, QUEUEING-FUNCTION)
nodes = MAKE-QUEUE(MAKE-NODE(problem.INITIAL-STATE))
loop

if EMPTY(nodes) then return "failure"
node = REMOVE-FRONT(nodes)
if problem.GOAL-TEST(node.STATE) succeeds

then return node
nodes = QUEUEING-FUNCTION(nodes, EXPAND(node,

problem.OPERATORS))
end

;; Note: The goal test is NOT done when nodes are generated
;; Note: This algorithm does not detect loops



Key procedures to be defined

• EXPAND
– Generate all successor nodes of a given node, adding 

them to the graph
• GOAL-TEST
– Test if state satisfies all goal conditions

• QUEUEING-FUNCTION
– Used to maintain a ranked list of nodes that are 

candidates for expansion



Bookkeeping

Typical node data structure includes:
• State at this node 
• Parent node(s)
• Action(s) applied to get to this node
• Depth of this node (# of actions on shortest 

known path from initial state)
• Cost of path (sum of action costs on best 

path from initialstate)



Some issues
• Search process constructs a search tree/graph, where 
– root is initial state and 
– leaf nodes are nodes
• not yet expanded (i.e., in list �nodes�) or 
• having no successors (i.e., they’re deadends because no 

operators were applicable and yet they are not goals)

• Search tree may be infinite due to loops;  even graph 
may be infinite for some problems 
• Solution is a path or a node, depending on problem. 
– E.g., in cryptarithmetic return a node; in 8-puzzle, a path

• Changing definition of the QUEUEING-FUNCTION leads 
to different search strategies



Uninformed vs. informed search
Uninformed search strategies (blind search)
–Use no information about likely �direction� of goal 

node(s) 
–Methods: breadth-first, depth-first, depth-limited, 

uniform-cost, depth-first iterative deepening, 
bidirectional

Informed search strategies (heuristic search)
–Use information about domain to (try to) (usually) 

head in the general direction of goal node(s)
–Methods: hill climbing, best-first, greedy search, 

beam search, algorithm A, algorithm A*

https://en.wikipedia.org/wiki/Heuristic


Evaluating search strategies
• Completeness
– Guarantees finding a solution whenever one exists

• Time complexity (worst or average case)
– Usually measured by number of nodes expanded

• Space complexity
– Usually measured by maximum size of graph/tree

during the search
• Optimality/Admissibility
– If a solution is found, is it guaranteed to be an 

optimal one, i.e., one with minimum cost



Example of uninformed search strategies

S

CBA

D GE

3 1 8

15 20 5
3
7

Consider this search space where S is the start 
node and G is the goal. Numbers are arc costs. 



Classic uninformed search methods

• The four  classic uninformed search methods
–Breadth first search (BFS)
–Depth first search (DFS)
–Uniform cost search (generalization of BFS)
– Iterative deepening (blend of DFS and BFS)

• To which we can add another technique
–Bi-directional search (hack on BFS)



Breadth-First Search
• Enqueue nodes in FIFO (first-in, first-out) order
• Complete
• Optimal (i.e., admissible) finds shorted path, 

which is optimal if all operators have same cost
• Exponential time and space complexity, O(bd), 

where d is depth of solution and b is branching 
factor (i.e., # of children)
• Takes a long time to find solutions with large 

number of steps because must look at all shorter 
length possibilities first 



Breadth-First Search
Expanded node  Nodes list (aka Fringe)

{ S0 }

S0 { A3 B1 C8 }

A3 { B1 C8 D6 E10 G18 }   

B1 { C8 D6 E10 G18 G21 }

C8 { D6 E10 G18 G21 G13 }         

D6 { E10 G18 G21 G13 }   

E10 { G18 G21 G13 }     

G18 { G21 G13 }

Note: we typically don’t check for goal until we expand node

Solution path found is S A G , cost 18

Number of nodes expanded (including goal node) = 7

Notation

G18

G is node; 18 is 
cost of shortest 

known path from
start node S

weighted arcs



Breadth-First Search
Long time to find solutions with many steps: we 
must look at all shorter length possibilities first
• Complete search tree of depth d where non-leaf nodes 

have b children has 1 + b + b2 + ... + bd = (b(d+1) -
1)/(b-1) nodes = 0(bd)
• Tree of depth 12 with branching 10 has more than 

a trillion nodes
• If BFS expands 1000 nodes/sec and nodes uses 100 

bytes, then it may take 35 years to run and uses 
111 terabytes of memory!



Depth-First (DFS)
• Enqueue nodes on nodes in LIFO (last-in, first-out) 

order, i.e.,  use stack data structure to order nodes
• May not terminate w/o depth bound, i.e., ending 

search below fixed depth D (depth-limited search)
• Not complete (with or w/o cycle detection, with or 

w/o a cutoff depth) 
• Exponential time, O(bd), but linear space, O(bd)
• Can find long solutions quickly if lucky (and short 

solutions slowly if unlucky!)
• On reaching deadend, can only back up one level 

at a time even if problem occurs because of a bad 
choice at top of tree 



Depth-First Search 
Expanded node  Nodes list

{ S0 }
S0 { A3 B1 C8 }
A3 { D6 E10 G18 B1 C8 }    
D6 { E10 G18 B1 C8 }
E10 { G18 B1 C8 }               
G18 { B1 C8 } 

Solution path found is S A G, cost 18
Number of nodes expanded (including goal node) = 5



Uniform-Cost Search (UCS)
• Enqueue nodes by path cost. i.e., let g(n) = cost of 

path from start to current node n. Sort nodes by 
increasing value of g(n). 

• Also called Dijkstra’s Algorithm, similar to Branch 
and Bound Algorithm from operations research

• Complete (*)
• Optimal/Admissible (*)

Depends on goal test being applied when node is removed 
from nodes list, not when its parent node is expanded & 
node first generated 

• Exponential time and space complexity, O(bd) 

https://en.wikipedia.org/wiki/Edsger_W._Dijkstra


Uniform-Cost Search 
Expanded node  Nodes list

{ S0 }

S0 { B1 A3 C8 }

B1 { A3 C8 G21 }

A3 { D6 C8 E10 G18 G21 }

D6 { C8 E10 G18 G21 }

C8 { E10 G13 G18 G21 }       

E10 { G13 G18 G21 }

G13 { G18 G21 }                             

Solution path found is S C G, cost 13

Number of nodes expanded (including goal node) = 7



Depth-First Iterative Deepening (DFID)
• Do DFS to depth 0, then (if no solution) DFS to 

depth 1, etc.
• Usually used with a tree search
• Complete 
• Optimal/Admissible if all operators have unit 

cost, else finds shortest solution (like BFS)
• Time complexity a bit worse than BFS or DFS

Nodes near top of search tree generated many times, 
but since almost all nodes are near tree bottom, 
worst case time complexity still exponential, O(bd) 



• If branching factor is b and solution is at depth d, 

then nodes at depth d are generated once, nodes 

at depth d-1 are generated twice, etc. 

–Hence bd + 2b(d-1) + ... + db <= bd / (1 - 1/b)2 = O(bd). 

– If b=4, worst case is 1.78 * 4d, i.e., 78% more nodes 

searched than exist at depth d (in worst case)

• Linear space complexity, O(bd), like DFS 

• Has advantages of BFS (completeness) and DFS 

(i.e., limited space, finds longer paths quickly) 

• Preferred for large state spaces where solution 
depth is unknown

Depth-First Iterative Deepening (DFID)



How they perform
• Depth-First Search:

– 4 Expanded nodes: S A D E G 
– Solution found: S A G (cost 18)

• Breadth-First Search: 
– 7 Expanded nodes: S A B C D E G 
– Solution found: S A G (cost 18)

• Uniform-Cost Search: 
– 7 Expanded nodes: S A D B C E G 
– Solution found: S C G (cost 13)
Only uninformed search that worries about costs

• Iterative-Deepening Search: 
– 10 nodes expanded: S S A B C S A D E G 
– Solution found: S A G (cost 18)



Searching Backward from Goal
• Usually a successor function is reversible
– i.e., can generate a node’s predecessors in graph

• If we know a single goal (rather than a goal’s  
properties), we could search backward to the 
initial state

• It might be more efficient
– Depends on whether the graph fans in or out



Bi-directional search

•Alternate searching from the start state toward the goal 
and from the goal state toward the start
• Stop when the frontiers intersect
•Works well only when there are unique start & goal states
• Requires ability to generate �predecessor� states
• Can (sometimes) lead to finding a solution more quickly



Comparing Search Strategies 


