
Logical
Agents

Logical agents for Wumpus World

We’ll use the Wumpus World domain to explore
three (non-exclusive) agent architectures:

� Reflex agents
Rules classify situations based on percepts and
specify how to react to each possible situation

�Model-based agents
Construct an internal model of their world

� Goal-based agents
Form goals and try to achieve them

AIMA’s Wumpus World

The agent always
starts in the field [1,1]

Agent’s task is to find
the gold, return to the
field [1,1] and climb
out of the cave

� simple reflex agent: if-then rules
• Rules to map percepts into observations:
"b,g,u,c,t Percept([Stench, b, g, u, c], t) ® Stench(t)
"s,g,u,c,t Percept([s, Breeze, g, u, c], t) ® Breeze(t)
"s,b,u,c,t Percept([s, b, Glitter, u, c], t) ® AtGold(t)

• Rules to select action given observations:
"t AtGold(t) ® Action(Grab, t);

• Difficulties:
– Consider Climb: No percept indicates agent should climb

out; position & holding gold not part of percept sequence
– Loops: percepts repeated when you return to a square,

causing same response (unless we maintain some internal
model of the world)

• Acquire and use a model of their environment
• Model must change over time
• Agent should, in general, remember past

environments
• Agent must be able to predict how an action

will/may change the environment

�Model based agents

Representing change in Logic
• Representing changing world in logic is tricky
• One way: just change the KB

– Add and delete sentences from KB to reflect changes
– How do we remember past, or reason about changes?

• Situation calculus is another way
• Situation: snapshot of the world

at some instant in time
• When the agent performs

action A in situation S1,
result is new situation S2

Situation calculus
• A situation is a snapshot of the world at an

interval of time during which nothing changes
• Need way to associate assertions with a

situation
1.Add situation variables to every predicate

e.g., at(Agent, L) becomes at(Agent, L, s0):
at(Agent, L) true in situation (i.e., state) s0

2.Add a special 2nd order predicate, holds(f, s),
meaning �f is true in situation s�
e.g., holds(at(Agent, L), s0)

Situation calculus
• Add new function, result(a, s), mapping

situation s to new situation as result of
performing action a
– i.e., result(forward, s) is a function returning next

situation

• Example: The action agent-walks-to-location-
y could be represented by

("x)("y)("s) (at(Agent, L1, S) Ù ¬onbox(S))
® at(Agent, L2, result(walk(L2), S))

Deducing hidden properties

• From the perceptual information we obtain
in situations, we can infer properties of
locations
"l,s at(Agent, L, s) Ù Breeze(s) ® Breezy(L)
"l,s at(Agent, L s) Ù Stench(s) ® Smelly(L)

• Neither Breezy nor Smelly need situation
arguments because pits and the Wumpus do
not move around

Deducing hidden properties II
• Need rules relating aspects of single world state (as

opposed to between states)
• Two main kinds of such rules:

– Causal rules reflect assumed direction of causality
("L1,L2,S) at(Wumpus,L1,S) Ù adjacent(L1,L2) ® Smelly(L2)
(" L1,L2,S) at(Pit,L1,S) Ù adjacent(L1,L2) ® Breezy(L2)

• Systems with causal rules are model-based reasoning systems

–Diagnostic rules infer presence of hidden properties
directly from percept-derived information, e.g.

(" L,S) at(Agent,L,S) Ù Breeze(S) ® Breezy(L)
(" L,S) at(Agent,L,S) Ù Stench(S) ® Smelly(L)

Blocks world
The blocks world is a micro-world consisting of
a table, a set of blocks and a robot hand
Some domain constraints:
– Only one block can be on another block
– Any number of blocks can be on table
– The hand can only hold one block

Typical representation:
ontable(b) ontable(d)
on(c,d) holding(a)
clear(b) clear(c)

Meant to be a simple model!

Representing change

• Frame axioms encode what’s not changed
by an action

• E.g., moving a clear block to the table doesn’t
change the location of any other blocks

On(x, z, s) Ù Clear(x, s) ®
On(x, table, Result(Move(x, table), s)) Ù
¬On(x, z, Result(Move (x, table), s))

On(y, z, s) Ù y¹ x ® On(y, z, Result(Move(x, table), s))

• Proliferation of frame axioms becomes very
cumbersome in complex domains
– What about color, size, shape, ownership, etc.

blocks world

http://en.wikipedia.org/wiki/Blocks_world

Qualification problem

• How can you characterize every effect of
an action, or every exception that might occur?

• Putting my bread into the toaster, & pushing the button,
it will become toasted after two minutes, unless…
– The toaster is broken, or…
– The power is out, or…
– I blow a fuse, or…
– A neutron bomb explodes nearby and fries all electrical

components, or…
– A meteor strikes the earth, and the world we know it

ceases to exist, or…

Ramification problem
Nearly impossible to characterize every side
effect of every action, at every level of detail

When I put my bread into the toaster, and push the button,
the bread will become toasted after two minutes, and…
– The crumbs that fall off the bread onto the bottom of the toaster over tray

will also become toasted, and…
– Some of the those crumbs will become burnt, and…
– The outside molecules of the bread will become �toasted,� and…
– The inside molecules of the bread will remain more �breadlike,� and…
– The toasting process will release a small amount of humidity into the air

because of evaporation, and…
– The heating elements will become a tiny fraction more likely to burn out

the next time I use the toaster, and…
– The electricity meter in the house will move up slightly, and…

Knowledge engineering!
• Modeling the right conditions and the right

effects at the right level of abstraction is difficult
• Knowledge engineering (creating & maintaining

KBs for intelligent reasoning) is field unto itself
• We hope automated knowledge acquisition and

machine learning tools can fill the gap:
– Intelligent systems should learn about conditions and

effects, just like we do!
– Intelligent systems should learn when to pay attention

to, or reason about, certain aspects of processes,
depending on context. (metacognition?)

http://en.wikipedia.org/wiki/Knowledge_engineering

� Goal-based agents

• Goal based agents model their goals
• And how their actions move them closer or

father than their goals

Preferences among actions
• Problem: how to decide which of several

actions is best
• E.g., in choosing between forward and grab,

axioms describing when it is OK to move to a
square would have to mention glitter

• Not modular!
• We can solve this problem by separating facts

about actions from facts about goals
• This way our agent can be reprogrammed just

by asking it to achieve different goals

Preferences among actions

• First step: describe desirability of actions
independent of each other

• We can use a simple scale: actions can be
Great, Good, Medium, Risky or Deadly

• Agent should always do best action it can find:
("a,s) Great(a,s) ® Action(a,s)
("a,s) Good(a,s) Ù ¬($b) Great(b,s) ® Action(a,s)
("a,s) Medium(a,s) Ù (¬($b) Great(b,s) Ú Good(b,s))
® Action(a,s)

...

Preferences among actions
Until it finds gold, basic agent strategy can be:
• Great actions: picking up gold when found;

climbing out of cave with the gold
• Good actions: moving to square that’s OK and

hasn't been visited yet
• Medium actions: moving to a square that is OK

and has already been visited
• Risky actions: moving to square that’s not

known to be deadly or OK
• Deadly actions: moving into a square that is

known to have pit or Wumpus

Achieving one goal uncovers another
• Once gold is found, we must change strategies,

requiring new set of action values
• We could encode this as a rule:

– ("s) Holding(Gold,s) ® GoalLocation([1,1]),s)
• We must decide how the agent will work out a

sequence of actions to accomplish the goal
• Three possible approaches:
– Inference: good versus wasteful solutions
– Search: a problem with operators and set of states
– Planning: to be discussed later

Coming up next

•Logical inference
•Knowledge representation
•Planning

