First-Order Logic:
Review



First-order logic

e First-order logic (FOL) models the world in terms of
— Objects, which are things with individual identities
— Properties of objects that distinguish them from others
— Relations that hold among sets of objects

— Functions, a subset of relations where there is only one
“value” for any given “input”

e Examples:
— Objects: Students, lectures, companies, cars ...

— Relations: Brother-of, bigger-than, outside, part-of, has-
color, occurs-after, owns, visits, precedes, ...

— Properties: blue, oval, even, large, ...
— Functions: father-of, best-friend, second-half, more-than



User provides

e Constant symbols representing individuals in the
world
—BarackObama, 3, Green

e Function symbols, map individuals to individuals
—father_of(SashaObama) = BarackObama
—color_of(Sky) = Blue

e Predicate symbols, map individuals to truth values
—greater(5,3)

—green(Grass)
—color(Grass, Green)



FOL Provides

eVariable symbols
—E.g., X, Y, foo
e Connectives

—Same as in propositional logic: not (—),
and (A), or (v), implies (=), iff (<)

e Quantifiers
—Universal Vx or (Ax)
—Existential dx or (Ex)



Sentences: built from terms and atoms

e A term (denoting a real-world individual) is a
constant symbol, variable symbol, or n-place
function of n terms, e.g.:

—Constants: john, umbc
—Variables: x, vy, z
—Functions: mother_of(john), phone(mother(x))

eGround terms have no variables in them

—Ground: john, father_ of(father_of(john))
—Not Ground: father_ of(X)



Sentences: built from terms and atoms
e An atomic sentence (which has value true or

false) is an n-place predicate of n terms, e.g.:

—green(Kermit))

—between(Philadelphia, Baltimore, DC)

—loves(X, mother(X))

e A complex sentence is formed from atomic
sentences connected by logical connectives:

—P, PvQ, PAQ, P—Q, P<>Q
where P and Q are sentences



What do atomic sentences mean?

e Unary predicates typically encode a type or
is_a relationship
—Dolphin(flipper): flipper is a kind of dolphin
—Green(kermit): kermit is a kind of green thing
—Integer(x): x is a kind of integer

e Non-unary predicates typically encode
relations
—Loves(john, mary)
—Greater_than(2, 1)
—Between(newYork, philadelphia, baltimore)



Ontologies

e Desighing a logic representation is similar to
modeling in an object-oriented language

e An ontology is a “formal naming and
definition of the types, properties, and
interrelationships of the entities that really
exist in a particular domain of discourse”

eSee schema.org as for an ontology that’s
used by search engines to add semantic
data to web sites



http://schema.org/

Sentences: built from terms and atoms

e quantified sentences adds quantifiers V and 3
—Vx loves(x, mother(x))
—dx number(x) A greater(x, 100), prime(x)

e A well-formed formula (wff) is a sentence
with no free variables; all variables are bound
by either a universal or existential quantifier

In (Vx)P(x, y) xis bound and vy is free



Quantifiers

e Universal quantification

—(Vx)P(x) means P holds for all values of x in
domain associated with variable

—E.g., (Vx) dolphin(x) > mammal(x)
e Existential quantification

—(3dx)P(x) means P holds for some value of x
in domain associated with variable

—E.g., (3x) mammal(x) A lays_eggs(x)

—This lets us make a statement about some
object without identifying it



Quantifiers (1)

e Universal quantifiers often used with implies to
form rules:

( Vx) student(x) — smart(x) means “All students are
smart’
e Universal quantification rarely used to make
blanket statements about every individual in
the world:

( Vx) student(x) A smart(x) means “Everything in the
world is a student and is smart”



Quantifiers (2)

e Existential quantifiers usually used with and to
specify a list of properties about an individual:

(3x) student(x) A smart(x) means “There is a student
who is smart”

e Common mistake: represent this in FOL as:
(=Zx) student(x) — smart(x)

e \What does this sentence mean?
—??



Quantifiers (2)

e Existential quantifiers usually used with and to
specify a list of properties about an individual:

(3x) student(x) A smart(x) means “There is a student
who is smart”

e Common mistake: represent this in FOL as:
(=Zx) student(x) — smart(x)
e \What does this sentence mean?
-P>Q="PvQ
— Ix student(x) — smart(x) = = ~student(x) v smart(x)
—There’s something that is not a student or is smart



Quantifier Scope

e FOL sentences have structure, like programs
e |In particular, variables in a sentence have a scope
e For example, suppose we want to say
—everyone who is alive loves someone
—(Vx) alive(x) — (3y) loves(x,y)
e Here’s how we scope the variables

(Vx) alive(x) — (3dy) loves(x,y)

Scope of x
— SCOpE Of y



Quantifier Scope

e Switching order of universal quantifiers does not
change the meaning
— (VX)(Vy)P(x,y) <> (Vy)(VX) P(x,y)
— Dogs hate cats (i.e., all dogs hate all cats)

e You can switch order of existential quantifiers
— (Ix)(Fy)P(x,y) <> (3y)(3x) P(x,y)
— A cat killed a dog

e Switching order of universal and existential
quantifiers does change meaning:
— Everyone likes someone: (Vx)(3y) likes(x,y)
— Someone is liked by everyone: (3y)(Vx) likes(x,y)



| Procedural example 1
def verifyl():

# Everyone likes someone: ( V'x)(3y) likes(x,y)
for plin people():
foundLike = False
for p2 in people():
if likes(pl, p2):

, Every person has at
foundLike = True

least one individual that
break they like.

if not FoundLike:
print(pl, ‘does not like anyone ®’)
return False

return True



def verify2(): Procedural example 2

# Someone is liked by everyone: (Zy)( Vx) likes(x,y)
for p2 in people():
foundHater = False
for plin people():
if not likes(p1, p2):

foundHater = True There is a person who is

liked by every person in
break the universe.

if not foundHater
print(p2, ‘is liked by everyone ©’)
return True

return False



Connections between V and 3

e \We can relate sentences involving V and 3 using
extensions to De Morgan’s laws:

1.(Vx) =P(x) €2 —(3x) P(x)
2.=(Vx) P(x) > (3dx) =P(x)
3.(Vx) P(x) > — (3dx) =P(x)
4.(3x) P(x) <> —(Vx) =P(x)
e Examples
1. All dogs don’t like cats €<> No dog likes cats
2. Not all dogs dance €<= There is a dog that doesn’t dance
3. All dogs sleep €= There is no dog that doesn’t sleep
4. There is a dog that talks €< Not all dogs can’t talk



http://en.wikipedia.org/wiki/De_Morgan's_laws

Universal instantiation
(a.k.a. universal elimination)

o |f (Vx) P(x) is true, then P(C) is true, where C
IS any constant in the domain of x, e.g.:

(Vx) eats(John, x) =
eats(John, Cheese18)
e Note that function applied to ground terms
is also a constant
(Vx) eats(John, x) =
eats(John, contents(Box42))



Existential instantiation
(a.k.a. existential elimination)

e From (3dx) P(x) infer P(c), e.g.:
— (dx) eats(Mikey, x) — eats(Mikey, Stuff345)

e The variable is replaced by a brand-new constant
not occurring in this or any sentence in the KB

e Also known as skolemization; constant is a skolem
constant

e We don’t want to accidentally draw other
inferences about it by introducing the constant

e Can use this to reason about unknown objects,
rather than constantly manipulating existential
guantifiers



Existential generalization
(a.k.a. existential introduction)

o |f P(c) is true, then (dx) P(x) is inferred, e.g.:
Eats(Mickey, Cheesel8) =
(dx) eats(Mickey, x)

e All instances of the given constant symbol
are replaced by the new variable symbol

e Note that the variable symbol cannot
already exist anywhere in the expression



Translating English to FOL

Every gardener likes the sun
Vx gardener(x) — likes(x,Sun)

All purple mushrooms are poisonous
Vx (mushroom(x) A purple(x)) — poisonous(x)
No purple mushroom is poisonous (two ways)
—3dx purple(x) A mushroom(x) A poisonous(x)
Vx (mushroom(x) A purple(x)) — —poisonous(x)



Translating English to FOL

There are (at least) two purple mushrooms

dx Ay mushroom(x) A purple(x) A mushroom(y) A
purple(y) A —(x=y)

There are exactly two purple mushrooms

dx Ay mushroom(x) A purple(x) A mushroom(y) A

purple(y) A —=(x=y) A
Vz (mushroom(z) A purple(z)) — ((x=2) v (y=z))

Obama is not short
—short(Obama)



Translating English to FOL

What do these mean?

e You can fool some of the people all of the time

e You can fool all of the people some of the time



Translating English to FOL

What do these mean?

Both English statements are ambiguous

e You can fool some of the people all of the time

There is a nonempty group of people so easily fooled
that you can fool that group every time*

For any given time, there is a non-empty group at
that time that you can fool

e You can fool all of the people some of the time

There are one or more times when it’s possible to
fool everyone*

Everybody can be fooled at some point in time
* Most common interpretation, I think



Some terms we will need

eperson(x): True iff x is a person

etime(t): True iff tis a point in time

e canFool(x, t): True iff x can be fooled at time t
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Translating English to FOL

You can fool some of the people all of the time

There is a nonempty group of people so easily fooled
that you can fool that group every time*

= There’s a person that you can fool every time
dx Vt person(x) A time(t) — canFool(x, t)

For any given time, there is a non-empty group at
that time that you can fool

= For every time, there is a person at that time that
you can fool

Yt dx person(x) A time(t) — canFool(x, t)

* Most common interpretation, I think



Translating English to FOL

You can fool all of the people some of the time

There are one or more times when it’s possible to
fool everyone*

Jt Vx time(t) A person(x) — canFool(x, t)

Everybody can be fooled at some point in time
Vx dt person(x) A time(t) — canFool(x, t)

* Most common interpretation, I think



Simple genealogy KB in FOL

Design a knowledge base using FOL that

e Has facts of immediate family relations, e.g.,
spouses, parents, etc.

e Defines of more complex relations (ancestors,
relatives)

e Detect conflicts, e.g., you are your own
parent

e |nfers relations, e.g., grandparent from parent

e Answers queries about relationships between
people




How do we approach this?

e Design an initial ontology of types, e.g.
—e.g., person, man, woman, male, female

e Extend ontology by defining relations, e.g.
— spouse, has_child, has_parent

e Add general constraints to relations, e.g.
—spouse(X,Y)=>~X=Y
—spouse(X,Y) => person(X), person(Y)

e Add FOL sentences for inference, e.g.
—spouse(X,Y) < spouse(Y,X)
—man(X) < person(X) Amale(X)




Example: A simple genealogy KB by FOL

e Predicates:

—parent(x, y), child(x, y), father(x, y), daughter(x, y),
etc.

—spouse(x, y), husband(x, y), wife(x,y)
—ancestor(x, y), descendant(x, y)
—male(x), female(y)

—relative(x, y)

e Facts:
—husband(Joe, Mary), son(Fred, Joe)
—spouse(John, Nancy), male(John), son(Mark, Nancy)
—father(Jack, Nancy), daughter(Linda, Jack)
—daughter(Liz, Linda)
—etc.



Example Axioms

(Vx,y) parent(x, y) €<= child (y, x)

(Vx,y) father(x, y) € parent(x, y) A male(x) ;similar for mother(x,
(Vx,y) daughter(x, y) €= child(x, y) A female(x) ;similar for son(x, y)
(Vx,y) husband(x, y) €= spouse(x, y) A male(x) ;similar for wife(x, y)
(Vx,y) spouse(x, y) €2 spouse(y, X) ;spouse relation is symmetric

(Vx,y
(Vx,y
(Vx,y) descendant(x, y) <> ancestor(y, x)

parent(x, y) — ancestor(x, y)

(3z) parent(x, z) A ancestor(z, y) — ancestor(x, y)

(Vx,y)(dz) ancestor(z, x) A ancestor(z, y) — relative(x, y)
(Vx,y) spouse(x, y) — relative(x, y) ;related by marriage
(Vx,y)(Jz) relative(z, x) A relative(z, y) — relative(x, y) ;transitive

)
)
)
)
)
)
)
)
)
)
)
)

(Vx,y) relative(x, y) € relative(y, x) ;symmetric



Axioms, definitions and theorems

e Axioms: facts and rules that capture (important) facts
& concepts in a domain; axioms are used to prove
theorems

— Mathematicians dislike unnecessary (dependent) axioms, i.e.
ones that can be derived from others

— Dependent axioms can make reasoning faster, however

— Choosing a good set of axioms is a design problem

e A definition of a predicate is of the form “p(X) & ...”
and can be decomposed into two parts

— Necessary description: “p(x) = ...~
— Sufficient description “p(x) « ...”

— Some concepts have definitions (e.g., triangle) and some don’t
(e.g., person)



More on definitions

Example: define father(x, y) by parent(x, y) and
male(x)

e parent(x, y) is a necessary (but not sufficient)
description of father(x, y)

father(x, y) — parent(x, y)

e parent(x, y) » male(x) * age(x, 35) is a sufficient (but
not necessary) description of father(x, y):

father(x, y) < parent(x, y) » male(x) * age(x, 35)

e parent(x, y) » male(x) is a necessary and sufficient
description of father(x, y)

parent(x, y) » male(x) €= father(x, y)



More on definitions

2 Is 2 P(x) # all Ps are Ss
necessary

condition of P(x) S(x) (Vx) P(x) =>S(x)
S(x) is a

SL(1ﬁ)°icient S # all Ps are Ss
condition of P(x) P(X) (Vx) P(x) <= S(x)
S(x) is a P(x) # all Ps are Ss

necessary and

# all Ss are Ps
sufficient « S(x)

condition of P(x) (V'x) P(x) <=>S(x)



Higher-order logic

e FOL only lets us quantify over variables, and
variables can only range over objects

e HOL allows us to quantify over relations, e.g.

“two functions are equal iff they produce the same
value for all arguments”

Vi Vg (f=g) <> (Vxf(x) =g(x))
eE.g.: (quantify over predicates)

V'r transitive( r) — (Vxyz) r(x,y) A r(y,z) = r(x,z))
e More expressive, but undecidable, in general



Expressing uniqueness

\ \ ikg

e Often want to say that there is a single, unique syntactic
object that satisfies a condition e
e There exists a unique x such that king(x) is true
— dx king(x) A Yy (king(y) — x=y)
— dx king(x) A =3y (king(y) A xy)
— 31 x king(x)
e Every country has exactly one ruler
— V¢ country(c) — 3! r ruler(c,r)
e lota operator: 1 x P(x) means “the unique x such
that p(x) is true”
— The unique ruler of Freedonia is dead
— dead(1 x ruler(freedonia,x))


http://en.wikipedia.org/wiki/Syntactic_sugar

Notational differences

e Different symbols for and, or, not, implies, ...
—-Vd=> S AV e
—pv(g”™r)
—p+(q*r)
*Prolog
cat(X) :- furry(X), meows (X), has(X, claws)

e Lispy notations
(forall ?x (implies (and (furry ?x)
(meows ?x)
(has ?x claws))

(cat ?x)))



-
A example of FOL in use E‘r‘

OWL
e Semantics of W3C’s Semantic Web stack

(RDF, RDFS, OWL) is defined in FOL
e OWL Full is equivalent to FOL

e Other OWL profiles support a subset of FOL
and are more efficient

e However, the semantics of schema.org is
only defined in natural language text

e ..and Google’s knowledge Graph probably
(!) uses probabilities
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http://schema.org/

FOL Summary

e First order logic (FOL) introduces predicates,
functions and quantifiers
e More expressive, but reasoning more complex

—Reasoning in propositional logic is NP hard, FOL is
semi-decidable

e Common Al knowledge representation language

—Other KR languages (e.g., OWL) are often defined by
mapping them to FOL

e FOL variables range over objects

—HOL variables range over functions, predicates or
sentences


http://en.wikipedia.org/wiki/Web_Ontology_Language

