Adversarial Search
(aka Games)

Chapter 5

Some material adopted from notes by Charles R. Dyer, U of Wisconsin-Madison



Why study games?

* Interesting, hard problems requiring minimal
“initial structure”

e Clear criteria for success

 Study problems involving {hostile, adversarial,
competing} agents and uncertainty of interacting
with the natural world

* People have used them to assess their intelligence
* Fun, good, easy to understand, PR potential
* Games often define very large search spaces, ¢€.g.

chess 35'% nodes in search tree, 10%° legal states



Chess early days

* 1948: Norbert Wiener describes how chess program can
work using minimax search with an evaluation function

* 1950: Claude Shannon publishes Programming a
Computer for Playing Chess

* 1951: Alan Turing develops on paper 1st program
capable of playing full chess game

* 1958: 1st program plays full game on IBM 704 (loses)

* 1962: Kotok & McCarthy (MIT) 1st program to play
credibly

* 1967: Greenblatt’s Mac Hack Six (MIT) defeats a
person 1n regular tournament play



https://en.wikipedia.org/wiki/Cybernetics:_Or_Control_and_Communication_in_the_Animal_and_the_Machine
http://www.csee.umbc.edu/courses/graduate/671/fall12/resources/ProgrammingaComputerforPlayingChess.pdf
https://www.youtube.com/watch?v=iT_Un3xo1qE
https://en.wikipedia.org/wiki/Kotok-McCarthy
http://en.wikipedia.org/wiki/Mac_Hack

State of the art

* 1979 Backgammon: BKG (CMU) tops world champ
* 1994 Checkers: Chinook 1s the world champion

* 1997 Chess: IBM Deep Blue beat Gary Kasparov

* 2007 Checkers: solved (1t’s a draw)

* 2016 Go: AlphaGo beat champion Lee Sedol

« 2017 Poker: CMU’s Libratus won $1.5M from 4 top
poker players in 3-week challenge in casino

* 20?? Bridge: Expert bridge programs exist, but no
world champions yet

* Check out the U. Alberta Games Group



http://www.bkgm.com/articles/Berliner/BackgammonProgramBeatsWorldChamp/
https://en.wikipedia.org/wiki/Chinook_(draughts_player)
https://en.wikipedia.org/wiki/Deep_Blue_(chess_computer)
http://www.cs.nyu.edu/courses/spring13/CSCI-UA.0472-001/Checkers/checkers.solved.science.pdf
https://en.wikipedia.org/wiki/AlphaGo
https://en.wikipedia.org/wiki/Libratus
https://en.wikipedia.org/wiki/Computer_bridge
http://www.cs.ualberta.ca/~games/

The board set for play

Chinook

 Chinook is the World Man-Machine Checkers
Champion, developed by researchers at the

University of Alberta

* It earned this title by competing in human
tournaments, winning the right to play for the
(human) world championship, and eventually
defeating the best players in the world

e Play Chinook online

e One Jump Ahead: Challenging Human
Supremacy in Checkers, Jonathan Schaeffer,
1998

» See Checkers Is Solved, J. Schaeffer, et al.,
Science, v317, n5844, pp1518-22, AAAS,
2007.



https://webdocs.cs.ualberta.ca/~chinook/play/
http://www.amazon.com/One-Jump-Ahead-Challenging-Supremacy/dp/0387949305
http://www.csee.umbc.edu/671/current/resources/2007checkers-is-solved.pdf
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Chess Grand Master Garry Kasparov, left, comtemplates his next move against IBM's Deep Blue chess computer while
Chung-Jen Tan, manager of the Deep Blue project looks on iduring the first game of a six-game rematch between
Kasparov and Deep Blue in this file photo from 1997. The computer program made history by becoming the first to
beat a world chess champion, Kasparov, at a serious game. Photo: Adam Nadel/Associated Press




Othello: Murakami vs. Logistello

open sourced

Takeshi Murakami
World Othello Champion

* 1997: The Logistello software crushed Murakami, 6 to 0
* Humans can not win against it

* Othello, with 10%8 states, is still not solved 1 9 9 7



http://www.cs.ualberta.ca/~mburo/log.html
http://www.cs.ualberta.ca/~mburo/log.html

Challenge Match

8 - 15 March 2016

T



Tuesday, January 31, 2017

CARNEGIE MELLON ARTIFICIAL INTELLIGENCE BEATS TOP
POKER PROS

Historic win at Rivers Casino is first against best human players 20 17

By Byron Spice
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Tuomas Sandholm (center) and Ph.D. student Noam Brown developed Libratus.



AlphaGo Zero learns on its Own

AlphaGo Zero was not trained on human games, but used

reinforcement learning while playing against itself
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https://deepmind.com/blog/alphago-zero-learning-scratch/

How can
we do it?



Classical vs. Statistical approach

e We'll look first at the classical
approach used from the 1940s to
2010

e Then at newer statistical
approached of which AlphaGo is
an example

e These share some techniques



Typical simple case for a game

e 2-person game
 Players alternate moves
e Zero-sum: one player’s loss 1s the other’s gain

* Perfect information: both players have access to
complete information about state of game. No
information hidden from either player

* No chance (e.g., using dice) involved

« Examples: Tic-Tac-Toe, Checkers, Chess, Go, Nim,
Othello

* But not: Bridge, Solitaire, Backgammon, Poker,
Rock-Paper-Scissors, ...



Can we use ...

 Uninformed search?
e Heuristic search?
e Local search?

e Constraint based search?



How to play a game

* A way to play such a game 1s to:
—Consider all the legal moves you can make
—Compute new position resulting from each move
—Evaluate each to determine which 1s best
—Make that move

— Wait for your opponent to move and repeat

» Key problems are:

—Representing the “board” (i.e., game state)
— Generating all legal next boards

—Evaluating a position



Evaluation function

« Evaluation function or static evaluator used to
evaluate the “goodness” of a game position

— Contrast with heuristic search where evaluation function is
non-negative estimate of cost from start node to goal passing
through given node

 Zero-sum assumption permits single function to
describe goodness of board for both players

—f(n) >> 0: position n good for me; bad for you
—f(n) << 0: position n bad for me; good for you
—f(n) near 0: position n 1s a neutral position

— f(n) = +infinity: win for me

— f(n) = -infinity: win for you


https://en.wikipedia.org/wiki/Zero-sum_game

Evaluation function examples

* For Tic-Tac-Toe
f(n) = [# my open 3lengths] - [# your open 3lengths]

Where 3length 1s complete row, column, or diagonal
and an open one 1s one that has no opponent marks

* Alan Turing’s function for chess
—f(n) = w(n)/b(n) where w(n) = sum of point value
of white’s pieces and b(n) = sum of black’s

—Traditional piece values: pawn:1; knight:3;
bishop:3; rook: 5; queen: 9



Evaluation function examples

* Most evaluation functions specified as a
weighted sum of positive features
f(n) = w,*feat,(n) + w,*feat,(n) + ... + w, *feat, (n)
» Example features for chess are piece count,

piece values, piece placement, squares
controlled, etc.

* IBM’s chess program Deep Blue (circa 1996)

had >&K features in its evaluation function


https://en.wikipedia.org/wiki/Deep_Blue_(chess_computer)

But, that’s not how people play

* People use look ahead

1.6., enumerate actions, consider opponent’s
possible responses, REPEAT

* Producing a complete game tree is only
possible for simple games

* S0, generate a partial game tree for some
number of plys

—Move = each player takes a turn
—Ply = one player’s turn

* What do we do with the game tree?


http://en.wikipedia.org/wiki/Game_tree
https://en.wikipedia.org/wiki/Ply_(game_theory)

MAX (X)

X X X B
MIN (O) X % X
| X X X
X|O Xl |0 X\_
MAX (X) 0 . :
* We can easily imagine
generating a complete
X0 X h.ALS] X0 s
MIN(O) X X game tree for Tic-Tac-Toe
* Taking board symmetries
_ into account, there are
| | | 138 terminal positions
X0 |X X0 X| [X|O|X m i ”
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DL ELEO) 010 and 3 draws
Wkility 1 0 +1



Game trees

* Problem spaces for typical games are trees

* Root node 1s current board configuration; player
must decide best single move to make next

* Static evaluator function rates board position
f(board):real, >0 for me; <0 for opponent

 Arcs represent possible legal moves for a player

 I[f my turn to move, then root 1s labeled a "MAX"
node; otherwise 1t’s a "MIN" node

* Each tree level’s nodes are all MAX or all MIN;

nodes at level 1 are of opposite kind from those at
level 1+1



Game Tree for Tic-Tac-Toe

. MAX nodes

1
1

MAX’ s play — //

MIN’s play —

______________ MIN nodes

Here, symmetries are used to
reduce branching factor

Terminal state
(win for MAX) —




Minimax procedure

e Create MAX node with current board
configuration

* Expand nodes to some depth (a.k.a. plys) of
lookahead 1n game

» Apply evaluation function at each leaf node

* Back up values for each non-leaf node until value
1s computed for the root node

— At MIN nodes: value 1s minimum of children’s values

— At MAX nodes: value 1s maximum of children’s values

* Choose move to child node whose backed-up
value determined value at root



Minimax theorem

e Intuition: assume your opponent 1s at least as smart as
you and play accordingly

—If she’s not, you can only do better!

 Von Neumann, J: Zur Theorie der Gesellschafts-
spiele Math. Annalen. 100 (1928) 295-320

For every 2-person, 0-sum game with finite strategies, there 1s
a value V and a mixed strategy for each player, such that (a)
given player 2's strategy, best payoff possible for player 1 is
V, and (b) given player 1's strategy, best payoff possible for
player 2 1s V.

* You can think of this as:
—Minimizing your maximum possible loss

—Max1imizing your minimum possible gain


https://en.wikipedia.org/wiki/John_von_Neumann

Minimax Algorithm
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selected by minimax

Static evaluator value




Partial Game Tree for Tic-Tac-Toe

MAX (X)
MIN (O) X X X
X X X
X|O Xl 0] [X
MAX (X) 0
f(n)=+1 1f position a win
MIN (O) o io x?: fOI'X
f(n)=-1 1f position a win
I ’ for O
X0 X X|01X] [X|O]X . L.
M ot el dalo f(n)=0 1f position a draw
Ukility 1 0 +1



Why use backed-up values?

= Intuition: if evaluation function is good, doing
look ahead and backing up values with Minimax
should be better

" Non-leaf node N’s backed-up value 1s value of best
state that MAX can reach at depth h if MIN plays
well

= “plays well”: same criterion as MAX applies to itself

= [f e 1s good, then backed-up value 1s better estimate
of STATE(N) goodness than e(STATE(IN))

= Use lookup horizon h because time to choose move
1s limited



Minimax Tree
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f value by minimax



Is that all there is to
simple games?



Alpha-beta pruning

* Improve performance of the minimax
algorithm through alpha-beta pruning

» “If you have an idea that is surely bad, don't

77

take the time to see how truly awful it is =~ --
Pat Winston

MAX
* We don’t need to compute

the value at this node

MIN Coe
« No matter what it 1s, it can’t

affect value of the root node
MAX




Alpha-beta pruning

 Traverse search tree 1n depth-first order
« At MAX node n, alpha(n) = max value found so far
« At MIN node n, beta(n) = min value found so far

— Alpha values start at -oo and only increase, while beta
values start at +oo and only decrease

e Beta cutoff: Given MAX node N, cut off search below
N (i.e., don’t examine any more of its children) if
alpha(N) >= beta(1) for some MIN node ancestor 1 of N

 Alpha cutoff: stop searching below MIN node N if
beta(N)<=alpha(1) for some MAX node ancestor 1 of N



Alpha-Beta Tic-Tac-Toe Example

P




Alpha-Beta Tic-Tac-Toe Example
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/l' he beta value of a MIN

node is an upper bound on
the final backed-up value.
It can never increase




Alpha-Beta Tic-Tac-Toe Example
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Alpha-Beta Tic-Tac-Toe Example
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It can never decrease




Alpha-Beta Tic-Tac-Toe Example

a=1
B=1 p=-1
oh




Alpha-Beta Tic-Tac-Toe Example

B=1 p=-1

Search can be discontinued below /
any MIN node whose beta value is oh
less than or equal to the alpha value
of one of its MAX ancestors

2 1 -1



Another alpha-beta example

MAX A 3

AAA K




Alpha-Beta Tic-Tac-Toe Example 2
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Effectiveness of alpha-beta

* Alpha-beta guaranteed to compute same value for
root node as minimax, but with < computation

* Worst case: no pruning, examine b¢ leaf nodes,
where nodes have b children & d-ply search i1s
done

* Best case: examine only (2b)%? leaf nodes

— You can search twice as deep as minimax!
—QOccurs if each player’s best move is 1st alternative

 In Deep Blue’s alpha-beta pruning, average
branching factor at node was ~6 instead of ~35!



Other Improvements

Adaptive horizon + iterative deepening

Extended search: retain k>1 best paths (not just
one) extend tree at greater depth below their leaf
nodes to help dealing with “horizon effect”

Singular extension: If move 1s obviously better
than others in node at horizon h, expand it

Use transposition tables to deal with repeated
states

Null-move search: assume player forfeits move; do
a shallow analysis of tree; result must surely be
worse than 1f player had moved. Can be used to
recognize moves that should be explored fully.



