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Today’s topics 
• Review probability theory 
• Bayesian inference 

– From the joint distribution 
– Using independence/factoring 
– From sources of evidence 
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Sources of Uncertainty 
• Uncertain inputs -- missing and/or noisy data 
• Uncertain knowledge 

– Multiple causes lead to multiple effects 
– Incomplete enumeration of conditions or effects 
– Incomplete knowledge of causality in the domain 
– Probabilistic/stochastic effects 

• Uncertain outputs 
– Abduction and induction are inherently uncertain 
– Default reasoning, even deductive, is uncertain 
– Incomplete deductive inference may be uncertain 

!Probabilistic reasoning only gives probabilistic 
results (summarizes uncertainty from various sources) 
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Decision making with uncertainty 
Rational behavior: 
• For each possible action, identify the possible 

outcomes 
• Compute the probability of each outcome 
• Compute the utility of each outcome 
• Compute the probability-weighted (expected) 

utility over possible outcomes for each action 
• Select action with the highest expected utility 

(principle of Maximum Expected Utility) 
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Why probabilities anyway? 
Kolmogorov showed that three simple axioms 
lead to the rules of probability theory 
1.  All probabilities are between 0 and 1: 

0 ≤ P(a) ≤ 1 
2.  Valid propositions (tautologies) have probability 1, 

and unsatisfiable propositions have probability 0: 
P(true) = 1 ; P(false) = 0 

3.  The probability of a disjunction is given 
by: 
P(a ∨ b) = P(a) + P(b) – P(a ∧ b) a∧b a b 
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Probability theory 101 
•  Random variables 

–  Domain 

•  Atomic event: 
complete specification 
of state 

•  Prior probability: 
degree of belief 
without any other 
evidence 

•  Joint probability: 
matrix of combined 
probabilities of a set 
of variables 

•  Alarm, Burglary, Earthquake 
–  Boolean (like these), discrete, continuous 

•  Alarm=T∧Burglary=T∧Earthquake=F 
alarm ∧ burglary ∧ ¬earthquake 
 

•  P(Burglary) = 0.1 
P(Alarm) = 0.1 
P(earthquake) = 0.000003 
  

•  P(Alarm, Burglary) = 

alarm ¬alarm 
burglary .09 .01 

¬burglary .1 .8 
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Probability theory 101 

•  Conditional probability: prob. 
of effect given causes 

•  Computing conditional probs: 
–  P(a | b) = P(a ∧  b) / P(b) 
–  P(b): normalizing constant 

•  Product rule: 
–  P(a ∧ b) = P(a | b) * P(b) 

 

•  Marginalizing: 
–  P(B) = ΣaP(B, a) 
–  P(B) = ΣaP(B | a) P(a) 

(conditioning) 

•  P(burglary | alarm) = .47 
P(alarm | burglary) = .9 

•  P(burglary | alarm) = 
  P(burglary ∧ alarm) / P(alarm) 
    = .09/.19 = .47 

•  P(burglary ∧ alarm) =  
  P(burglary | alarm) * P(alarm) 
    =  .47 * .19 = .09 

•  P(alarm) = 
   P(alarm ∧ burglary) + 
   P(alarm ∧ ¬burglary) 
   = .09+.1 = .19 

alarm ¬alarm 
burglary .09 .01 

¬burglary .1 .8 
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Example: Inference from the joint 
alarm ¬alarm 

earthquake ¬earthquake earthquake ¬earthquake 
burglary .01 .08 .001 .009 

¬burglary .01 .09 .01 .79 

P(burglary | alarm) = α P(burglary, alarm) 
     = α [P(burglary, alarm, earthquake) + P(burglary, alarm, ¬earthquake) 
     = α [ (.01, .01) + (.08, .09) ] 
     = α [ (.09, .1) ] 

Since P(burglary | alarm) + P(¬burglary | alarm) = 1, α = 1/(.09+.1) = 5.26 
    (i.e., P(alarm) = 1/α = .19 – quizlet: how can you verify this?) 

P(burglary | alarm)    = .09 * 5.26  = .474 

P(¬burglary | alarm)  = .1 * 5.26    = .526 
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Exercise: 
Inference from the joint 

•  Queries: 
– What is the prior probability of smart? 
– What is the prior probability of study? 
– What is the conditional probability of prepared, given 

study and smart? 

p(smart    ∧ 
        study ∧ prep) 

smart ¬smart 

study ¬study study ¬study 

prepared .432 .16 .084 .008 

¬prepared .048 .16 .036 .072 
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Exercise: 
Inference from the joint 

•  Queries: 
– What is the prior probability of smart? 
– What is the prior probability of study? 
– What is the conditional probability of prepared, given 

study and smart? 
• p(smart) = .432 + .16 + .048 + .16  = 0.8 

p(smart    ∧ 
        study ∧ prep) 

smart ¬smart 

study ¬study study ¬study 

prepared .432 .16 .084 .008 

¬prepared .048 .16 .036 .072 
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Exercise: 
Inference from the joint 

•  Queries: 
– What is the prior probability of smart? 
– What is the prior probability of study? 
– What is the conditional probability of prepared, given 

study and smart? 
• p(study) = .432 + .048 + .084 + .036 = 0.6 

p(smart    ∧ 
        study ∧ prep) 

smart ¬smart 

study ¬study study ¬study 

prepared .432 .16 .084 .008 

¬prepared .048 .16 .036 .072 
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Exercise: 
Inference from the joint 

•  Queries: 
– What is the prior probability of smart? 
– What is the prior probability of study? 
– What is the conditional probability of prepared, given 

study and smart? 
– p(prepared | smart, study) =  p(prepared, smart, study) / 

p(smart, study) = .432 / (.432 + .048) = 0.9 

p(smart    ∧ 
        study ∧ prep) 

smart ¬smart 

study ¬study study ¬study 

prepared .432 .16 .084 .008 

¬prepared .048 .16 .036 .072 
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Independence 
• When variables don’t affect each others’ probabil-

ities, we call them independent, and can easily 
compute their joint and conditional probability: 
Independent(A, B)  →  P(A∧B) = P(A) * P(B),  P(A | B) = P(A) 

•  {moonPhase, lightLevel} might be independent of 
{burglary, alarm, earthquake} 
– Maybe not: burglars may be more active during a new 

moon because darkness hides their activity 
– But if we know the light level, the moon phase doesn’t 

affect whether we are burglarized 
–  If burglarized, light level doesn’t affect if alarm goes off 

• Need a more complex notion of independence and 
methods for reasoning about the relationships 
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Exercise: Independence 

Queries: 
– Q1: Is smart independent of study? 
– Q2: Is prepared independent of study? 

How can we tell?  

p(smart    ∧ 
        study ∧ prep) 

smart ¬smart 

study ¬study study ¬study 

prepared .432 .16 .084 .008 

¬prepared .048 .16 .036 .072 
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Exercise: Independence 

Q1: Is smart independent of study? 
• You might have some intuitive beliefs based on 

your experience) 
• You can check the data 

p(smart    ∧ 
        study ∧ prep) 

smart ¬smart 

study ¬study study ¬study 

prepared .432 .16 .084 .008 

¬prepared .048 .16 .036 .072 



16 

Exercise: Independence 

Q1: Is smart independent of study? 
• Q1 true iff p(smart | study) == p(smart) 

p(smart | study) = p(smart, study) / p(study)  
  = (.432 + .048) / .6 = 0.8 
0.8 == 0.8, so smart is independent of study 

p(smart    ∧ 
        study ∧ prep) 

smart ¬smart 

study ¬study study ¬study 

prepared .432 .16 .084 .008 

¬prepared .048 .16 .036 .072 
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Exercise: Independence 

Q2: Is prepared independent of study? 
• What is prepared? 
• Q2 true iff  

p(smart    ∧ 
        study ∧ prep) 

smart ¬smart 

study ¬study study ¬study 

prepared .432 .16 .084 .008 

¬prepared .048 .16 .036 .072 
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Exercise: Independence 

Q2: Is prepared independent of study? 
• Q2 true iff p(prepared | study) == p(prepared) 
p(prepared | study) = p(prepared, study) / p(study) 
= (.432 + .084) / .6 = .86 
0.86 =/= 0.8, so prepared not independent of study 

p(smart    ∧ 
        study ∧ prep) 

smart ¬smart 

study ¬study study ¬study 

prepared .432 .16 .084 .008 

¬prepared .048 .16 .036 .072 
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Conditional independence 

• Absolute independence: 
– A and B are independent if P(A ∧ B) = P(A) * P(B); 

equivalently, P(A) = P(A | B) and P(B)  = P(B | A) 
• A and B are conditionally independent given C if 

– P(A ∧ B | C) = P(A | C) * P(B | C) 
• This lets us decompose the joint distribution: 

– P(A ∧ B ∧ C) = P(A | C) * P(B | C) * P(C) 
• Moon-Phase and Burglary are conditionally 

independent given Light-Level 
• Conditional independence is weaker than absolute 

independence, but useful in decomposing the full 
joint probability distribution 
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Conditional independence 

• An intuitive understanding is that conditional 
independence often arises due to causal 
relations 
– Phase of moon causally effects the level of light at 

night 
– Other things do too, e.g., presence of street lights 

• With respect to our burglary scenario, moon’s 
phase doesn’t directly effect anything else 

• So knowing the lighting level means we can 
ignore the moon phase in predicting wheter or 
not an alarm means we had a burglary 
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Bayes’ rule 
• Derived from the product rule: 

– P(C, E) = P(C | E) * P(E) 
– P(E, C)) = P(E | C) * P(C) 
– P(C, E) = P(E, C) 
So… 
– P(C | E) = P(E | C) * P(C) / P(E) 
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Bayes’ rule 
• Derived from the product rule: 

– P(C | E) = P(E | C) * P(C) / P(E) 

• Often useful for diagnosis:  
–  If E are (observed) effects and C are (hidden) causes,  
–  We often have a model for how causes lead to effects 

P(E | C) 
–  We may also have prior beliefs (based on experience) 

about the frequency of occurrence of causes (P(C)) 
–  Which allows us to reason abductively from effects to 

causes (P(C | E)) 



Ex: meningitis and stiff neck 
• Meningitis (M) can cause a a stiff neck (S), though 

here are many other causes for S, too 
• We’d like to use S as a diagnostic symptom and 

estimate p(M|S) 
• Studies can easily estimate p(M), p(S) and p(S|M) 

     p(M)=0.7, p(S)=0.01, p(M)=0.00002 
• Applying Bayes’ Rule: 

     p(M|S) = p(S|M) * p(M) / p(S) = 0.0014 
• We can also do this w/o p(S) if we know p(S|~M) 

    α <p(S|M)*P(m), p(S|~M)*p(~M)> 

23 
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Bayesian inference 
•  In the setting of diagnostic/evidential reasoning 

– Know prior probability of hypothesis    
        conditional probability  

– Want to compute the posterior probability 

• Bayes’s theorem (formula 1): 

onsanifestatievidence/m                                      

hypotheses                                             

1 mj

i

EEE

 H

P(Hi | Ej ) = P(Hi )*P(Ej |Hi ) / P(Ej )

)( iHP
)|( ij HEP

)|( ij HEP

)|( ji EHP

)( iHP
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Simple Bayesian diagnostic reasoning 

• Also known as: Naive Bayes classifier 
• Knowledge base: 

– Evidence / manifestations: E1, … Em 

– Hypotheses / disorders: H1, … Hn 

Note: Ej and Hi are binary; hypotheses are mutually 
exclusive (non-overlapping) and exhaustive (cover all 
possible cases) 

– Conditional probabilities: P(Ej | Hi), i = 1, … n; j = 1, … m 
• Cases (evidence for a particular instance): E1, …, El 

• Goal: Find the hypothesis Hi with the highest posterior 
– Maxi P(Hi | E1, …, El) 
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Simple Bayesian diagnostic reasoning 
• Bayes’ rule says that 

P(Hi | E1… Em) = P(E1…Em | Hi) P(Hi) / P(E1… Em) 
• Assume each evidence Ei is conditionally indepen-

dent of the others, given a hypothesis Hi, then: 
P(E1…Em | Hi) = ∏m

j=1 P(Ej | Hi) 

•  If we only care about relative probabilities for the 
Hi, then we have: 
P(Hi | E1…Em) = α P(Hi) ∏m

j=1 P(Ej | Hi) 
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Limitations 
• Can’t easily handle multi-fault situations or 

cases where intermediate (hidden) causes exist: 
– Disease D causes syndrome S, which causes 

correlated manifestations M1 and M2 

• Consider composite hypothesis H1∧H2, where H1 & 
H2 independent. What’s relative posterior? 
P(H1 ∧ H2 | E1, …, El) = α P(E1, …, El | H1 ∧ H2) P(H1 
∧ H2) 

 = α P(E1, …, El | H1 ∧ H2) P(H1) P(H2) 
 = α ∏l

j=1 P(Ej | H1 ∧ H2) P(H1) P(H2) 
• How do we compute P(Ej | H1∧H2) ? 
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Limitations 
•  Assume H1 and H2 are independent, given E1, …, El? 

–  P(H1 ∧ H2 | E1, …, El) = P(H1 | E1, …, El) P(H2 | E1, …, El) 

•  This is a very unreasonable assumption 
–  Earthquake and Burglar are independent, but not given Alarm: 

•  P(burglar | alarm, earthquake) << P(burglar | alarm) 

•  Another limitation is that simple application of Bayes’s rule 
doesn’t allow us to handle causal chaining: 
–  A: this year’s weather; B: cotton production; C: next year’s cotton price 
–  A influences C indirectly:  A→ B → C 
–  P(C | B, A) = P(C | B) 

•  Need a richer representation to model interacting hypotheses, 
conditional independence, and causal chaining 

•  Next: conditional independence and Bayesian networks! 



Summary 
• Probability is a rigorous formalism for uncertain 

knowledge 
•  Joint probability distribution specifies probability of 

every atomic event 
• Can answer queries by summing over atomic events 
• But we must find a way to reduce the joint size for 

non-trivial domains 
• Bayes’ rule lets unknown probabilities be computed 

from known conditional probabilities, usually in the 
causal direction 

•  Independence and conditional independence 
provide tools 

29 



Postscript: Frequentists vs. Bayesians  

• Frequentist inference draws conclusions from 
sample data based on the frequency or 
proportion of the data 

• Bayesian inference uses Bayes' rule to update 
probability estimates for a hypothesis as 
additional evidence is learned 

• The differences are often subtle, but can be 
consequential 
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Frequentists vs. Bayesians 
http://xkcd.com/1132/ 


