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Bayesian	
Reasoning	
Chapter	13	

Thomas	Bayes,	1701-1761	
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Today’s	topics	
• Review	probability	theory	
• Bayesian	inference	
– From	the	joint	distribuFon	
– Using	independence/factoring	
– From	sources	of	evidence	

• Naïve	Bayes	algorithm	for	inference	and	
classificaFon	tasks	
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Many	Sources	of	Uncertainty	
• Uncertain	inputs	--	missing	and/or	noisy	data	
• Uncertain	knowledge	
– MulFple	causes	lead	to	mulFple	effects	
– Incomplete	enumeraFon	of	condiFons	or	effects	
– Incomplete	knowledge	of	causality	in	the	domain	
– ProbabilisFc/stochasFc	effects	

• Uncertain	outputs	
– AbducFon	and	inducFon	are	inherently	uncertain	
– Default	reasoning,	even	deducFve,	is	uncertain	
– Incomplete	deducFve	inference	may	be	uncertain	

!ProbabilisFc	reasoning	only	gives	probabilisFc	results		
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Decision	making	with	uncertainty	
Ra?onal	behavior:	
• For	each	possible	acFon,	idenFfy	the	possible	
outcomes	

• Compute	the	probability	of	each	outcome	
• Compute	the	u?lity	of	each	outcome	
• Compute	the	probability-weighted	(expected)	
u?lity	over	possible	outcomes	for	each	acFon	

• Select	acFon	with	the	highest	expected	uFlity	
(principle	of	Maximum	Expected	U?lity)	



Consider	

• Your	house	has	an	alarm	system	
• It	should	go	off	if	a	burglar	breaks	
into	the	house	

• It	can	go	off	if	there	is	an	earthquake	
• How	can	we	predict	what’s	happened	if	the	
alarm	goes	off?	
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Probability	theory	101	
• Random	variables	

–  Domain	

• Atomic	event:	
complete	specificaFon	
of	state	

• Prior	probability:	
degree	of	belief	
without	any	other	
evidence	or	info	

•  Joint	probability:	
matrix	of	combined	
probabiliFes	of	set	of	
variables	

• Alarm,	Burglary,	Earthquake	
–  Boolean	(like	these),	discrete,	conFnuous	
• Alarm=T∧Burglary=T∧Earthquake=F	
alarm	∧	burglary	∧	¬earthquake	
	

• P(Burglary)	=	0.1	
P(Alarm)	=	0.1	
P(earthquake)	=	0.000003	
		

• P(Alarm,	Burglary)	=	

alarm	 ¬alarm	
burglary	 .09	 .01	
¬burglary	 .1	 .8	
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Probability	theory	101	

• Condi?onal	probability:	prob.	
of	effect	given	causes	

• Compu?ng	condi?onal	probs:	
–  P(a	|	b)	=	P(a	∧		b)	/	P(b)	
–  P(b):	normalizing	constant	

• Product	rule:	
–  P(a	∧	b)	=	P(a	|	b)	*	P(b)	
	

• Marginalizing:	
–  P(B)	=	ΣaP(B,	a)	
–  P(B)	=	ΣaP(B	|	a)	P(a)	
(condi?oning)	

• P(burglary	|	alarm)	=	.47	
P(alarm	|	burglary)	=	.9	

• P(burglary	|	alarm)	=	
		P(burglary	∧	alarm)	/	P(alarm)	
				=	.09/.19	=	.47	

• P(burglary	∧	alarm)	=		
		P(burglary	|	alarm)	*	P(alarm)	
				=		.47	*	.19	=	.09	

• P(alarm)	=	
			P(alarm	∧	burglary)	+	
			P(alarm	∧	¬burglary)	
			=	.09+.1	=	.19	

alarm	 ¬alarm	
burglary	 .09	 .01	
¬burglary	 .1	 .8	
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Example:	Inference	from	the	joint	
alarm	 ¬alarm	

earthquake	 ¬earthquake	 earthquake	 ¬earthquake	
burglary	 .01	 .08	 .001	 .009	

¬burglary	 .01	 .09	 .01	 .79	

P(burglary	|	alarm)	=	α	P(burglary,	alarm)	
					=	α	[P(burglary,	alarm,	earthquake)	+	P(burglary,	alarm,	¬earthquake)	
					=	α	[	(.01,	.01)	+	(.08,	.09)	]	
					=	α	[	(.09,	.1)	]	

Since	P(burglary	|	alarm)	+	P(¬burglary	|	alarm)	=	1,	α	=	1/(.09+.1)	=	5.26	
				(i.e.,	P(alarm)	=	1/α	=	.19	–	quizlet:	how	can	you	verify	this?)	

P(burglary	|	alarm)				=	.09	*	5.26		=	.474	

P(¬burglary	|	alarm)		=	.1	*	5.26				=	.526	



Consider	

• A	student	has	to	take	an	exam	
• She	might	be	smart	
• She	might	have	studied	
• She	may	be	prepared	for	the	exam	
• How	are	these	related?	
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Exercise:	
Inference	from	the	joint	

Queries:	
– What	is	the	prior	probability	of	smart?	
– What	is	the	prior	probability	of	study?	
– What	is	the	condiFonal	probability	of	prepared,	given	
study	and	smart?	

p(smart				∧	
								study	∧	prep)	

smart	 ¬smart	

study	 ¬study	 study	 ¬study	

prepared	 .432	 .16	 .084	 .008	

¬prepared	 .048	 .16	 .036	 .072	
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Exercise:	
Inference	from	the	joint	

Queries:	
– What	is	the	prior	probability	of	smart?	
– What	is	the	prior	probability	of	study?	
– What	is	the	condiFonal	probability	of	prepared,	given	
study	and	smart?	

p(smart)	=	.432	+	.16	+	.048	+	.16		=	0.8	

p(smart				∧	
								study	∧	prep)	

smart	 ¬smart	

study	 ¬study	 study	 ¬study	

prepared	 .432	 .16	 .084	 .008	

¬prepared	 .048	 .16	 .036	 .072	
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Exercise:	
Inference	from	the	joint	

Queries:	
– What	is	the	prior	probability	of	smart?	
– What	is	the	prior	probability	of	study?	
– What	is	the	condiFonal	probability	of	prepared,	given	
study	and	smart?	

p(smart				∧	
								study	∧	prep)	

smart	 ¬smart	

study	 ¬study	 study	 ¬study	

prepared	 .432	 .16	 .084	 .008	

¬prepared	 .048	 .16	 .036	 .072	
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Exercise:	
Inference	from	the	joint	

Queries:	
– What	is	the	prior	probability	of	smart?	
– What	is	the	prior	probability	of	study?	
– What	is	the	condiFonal	probability	of	prepared,	given	
study	and	smart?	

p(study)	=	.432	+	.048	+	.084	+	.036	=	0.6	

p(smart				∧	
								study	∧	prep)	

smart	 ¬smart	

study	 ¬study	 study	 ¬study	

prepared	 .432	 .16	 .084	 .008	

¬prepared	 .048	 .16	 .036	 .072	
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Exercise:	
Inference	from	the	joint	

Queries:	
– What	is	the	prior	probability	of	smart?	
– What	is	the	prior	probability	of	study?	
– What	is	the	condi?onal	probability	of	prepared,	given	
study	and	smart?	

p(smart				∧	
								study	∧	prep)	

smart	 ¬smart	

study	 ¬study	 study	 ¬study	

prepared	 .432	 .16	 .084	 .008	

¬prepared	 .048	 .16	 .036	 .072	
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Exercise:	
Inference	from	the	joint	

Queries:	
– What	is	the	prior	probability	of	smart?	
– What	is	the	prior	probability	of	study?	
– What	is	the	condi?onal	probability	of	prepared,	given	study	
and	smart?	

p(prepared|smart,study)=	p(prepared,smart,study)/p(smart,	study)		
=	.432	/	(.432	+	.048)		
=	0.9	

p(smart				∧	
								study	∧	prep)	

smart	 ¬smart	

study	 ¬study	 study	 ¬study	

prepared	 .432	 .16	 .084	 .008	

¬prepared	 .048	 .16	 .036	 .072	
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Independence	
• When	variables	don’t	affect	each	others’	probabil-
iFes,	we	call	them	independent,	and	can	easily	
compute	their	joint	and	condiFonal	probability:	
Independent(A,	B)		→		P(A∧B)	=	P(A)	*	P(B)	or	P(A|B)	=	P(A)	

• {moonPhase,	lightLevel}	might	be	independent	of	
{burglary,	alarm,	earthquake}	
– Maybe	not:	burglars	may	be	more	acFve	during	a	new	
moon	because	darkness	hides	their	acFvity	

– But	if	we	know	light	level,	moon	phase	doesn’t	affect	
whether	we	are	burglarized	

–  If	burglarized,	light	level	doesn’t	affect	if	alarm	goes	off	
• Need	a	more	complex	noFon	of	independence	and	
methods	for	reasoning	about	the	relaFonships	
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Exercise:	Independence	

Queries:	
– Q1:	Is	smart	independent	of	study?	
– Q2:	Is	prepared	independent	of	study?	

How	can	we	tell?		

p(smart				∧	
								study	∧	prep)	

smart	 ¬smart	

study	 ¬study	 study	 ¬study	

prepared	 .432	 .16	 .084	 .008	

¬prepared	 .048	 .16	 .036	 .072	
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Exercise:	Independence	

Q1:	Is	smart	independent	of	study?	
• You	might	have	some	intuiFve	beliefs	based	on	
your	experience	
• You	can	also	check	the	data	

Which	way	to	answer	this	is	beser?	

p(smart				∧	
								study	∧	prep)	

smart	 ¬smart	

study	 ¬study	 study	 ¬study	

prepared	 .432	 .16	 .084	 .008	

¬prepared	 .048	 .16	 .036	 .072	
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Exercise:	Independence	

Q1:	Is	smart	independent	of	study?	
Q1	true	iff	p(smart|study)	==	p(smart)	
p(smart|study)	=	p(smart,study)/p(study)		
			=	(.432	+	.048)	/	.6			=		0.8	
0.8	==	0.8,	so	smart	is	independent	of	study	

p(smart	∧	
								study	∧	prep)	

smart	 ¬smart	

study	 ¬study	 study	 ¬study	

prepared	 .432	 .16	 .084	 .008	

¬prepared	 .048	 .16	 .036	 .072	
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Exercise:	Independence	

Q2:	Is	prepared	independent	of	study?	
• What	is	prepared?	
• Q2	true	iff		

p(smart				∧	
								study	∧	prep)	

smart	 ¬smart	

study	 ¬study	 study	 ¬study	

prepared	 .432	 .16	 .084	 .008	

¬prepared	 .048	 .16	 .036	 .072	



Exercise:	Independence	

Q2:	Is	prepared	independent	of	study?	
Q2	true	iff	p(prepared|study)	==	p(prepared)	
p(prepared|study)	=	p(prepared,study)/p(study)	
			=	(.432	+	.084)	/	.6	=	.86	
0.86	≠	0.8,	so	prepared	not	independent	of	study	

p(smart				∧	
								study	∧	prep)	

smart	 ¬smart	

study	 ¬study	 study	 ¬study	

prepared	 .432	 .16	 .084	 .008	

¬prepared	 .048	 .16	 .036	 .072	



Condi?onal	independence	

• Absolute	independence:	
– A	and	B	are	independent	if	P(A	∧	B)	=	P(A)	*	P(B);	
equivalently,	P(A)	=	P(A	|	B)	and	P(B)		=	P(B	|	A)	

• A	and	B	are	condi?onally	independent	given	C	if	
– P(A	∧	B	|	C)	=	P(A	|	C)	*	P(B	|	C)	

• This	lets	us	decompose	the	joint	distribuFon:	
– P(A	∧	B	∧	C)	=	P(A	|	C)	*	P(B	|	C)	*	P(C)	

• Moon-Phase	and	Burglary	are	condi/onally	
independent	given	Light-Level	

• CondiFonal	independence	is	weaker	than	absolute	
independence,	but	useful	in	decomposing	full	joint	
probability	distribuFon	



Condi?onal	independence	
• IntuiFve	understanding:	condiFonal	
independence	owen	arises	due	to	causal	
relaFons	
– Moon	phase	causally	effects	light	level	at	night	
– Other	things	do	too,	e.g.,	street	lights	

• For	our	burglary	scenario,	moon	phase	
doesn’t	effect	anything	else	

• Knowing	light	level	means	we	can	ignore	
moon	phase	in	predicFng	whether	or	not	
alarm	suggests	we	had	a	burglary	
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Bayes’	rule	
Derived	from	the	product	rule:	
C	is	a	cause,	E	is	an	effect	
– P(C,	E)	=	P(C|E)	*	P(E)		#	from	defini9on	of	condi9onal	probability	
– P(E,	C)	=	P(E|C)	*	P(C)	#	from	defini9on	of	condi9onal	probability	
– P(C,	E)	=	P(E,	C)													#	since	order	is	not	important	
	
So…	
	
P(C|E)	=	P(E|C)	*	P(C)	/	P(E)	
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Bayes’	rule	
• Derived	from	the	product	rule:	
– P(C|E)	=	P(E|C)	*	P(C)	/	P(E)	

• Useful	for	diagnosis:		
– If	E	are	(observed)	effects	and	C	are	(hidden)	causes,		
– Owen	have	model	for	how	causes	lead	to	effects	P(E|C)	
– May	also	have	prior	beliefs	(based	on	experience)	
about	frequency	of	causes	(P(C))	

– Which	allows	us	to	reason	abducFvely	from	effects	to	
causes	(P(C|E))	



Ex:	meningi?s	and	s?ff	neck	
• MeningiFs	(M)	can	cause	sFff	neck	(S),	though	
there	are	other	causes	too	

• Use	S	as	a	diagnosFc	symptom	and	esFmate	
p(M|S)	

• Studies	can	esFmate	p(M),	p(S)	&	p(S|M),	e.g.						
p(M)=0.7,	p(S)=0.01,	p(M)=0.00002	

• Harder	to	directly	gather	data	on	p(M|S)	
• Applying	Bayes’	Rule:	
					p(M|S)	=	p(S|M)	*	p(M)	/	p(S)	=	0.0014	
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Bayesian	inference	
• In	the	se|ng	of	diagnosFc/evidenFal	reasoning	

– Know	prior	probability	of	hypothesis 			
	 							condiFonal	probability		

– Want	to	compute	the	posterior	probability	

• Bayes’s	theorem:	

onsanifestatievidence/m                                      

hypotheses                                             

1 mj

i

EEE

 H

P(Hi | Ej ) = P(Hi )*P(Ej |Hi ) / P(Ej )

)( iHP
)|( ij HEP

)|( ij HEP

)|( ji EHP

)( iHP
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Simple	Bayesian	diagnos?c	reasoning	
• AKA	Naive	Bayes	classifier	
• Knowledge	base:	
– Evidence	/	manifestaFons:	E1,	…	Em	

– Hypotheses	/	disorders:	H1,	…	Hn	

Note:	Ej	and	Hi	are	binary;	hypotheses	are	mutually	
exclusive	(non-overlapping)	and	exhaus?ve	(cover	all	
possible	cases)	

– CondiFonal	probabiliFes:	P(Ej	|	Hi),	i	=	1,	…	n;	j	=	1,	…	m	

• Cases	(evidence	for	a	parFcular	instance):	E1,	…,	El	
• Goal:	Find	the	hypothesis	Hi	with	highest	posterior	

– Maxi	P(Hi	|	E1,	…,	El)	
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Simple	Bayesian	diagnos?c	reasoning	

• Bayes’	rule	says	that	
P(Hi	|	E1…	Em)	=	P(E1…Em	|	Hi)	P(Hi)	/	P(E1…	Em)	

• Assume	each	evidence	Ei	is	condiFonally	indepen-
dent	of	the	others,	given	a	hypothesis	Hi,	then:	

P(E1…Em	|	Hi)	=	∏m
j=1	P(Ej	|	Hi)	

• If	we	only	care	about	relaFve	probabiliFes	for	the	
Hi,	then	we	have:	

P(Hi	|	E1…Em)	=	α	P(Hi)	∏m
j=1	P(Ej	|	Hi)	
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Limita?ons	
• Can’t	easily	handle	mul?-fault	situa?ons	or	
cases	where	intermediate	(hidden)	causes	exist:	
– Disease	D	causes	syndrome	S,	which	causes	
correlated	manifestaFons	M1	and	M2	

• Consider	composite	hypothesis	H1∧H2,	where	H1	&	
H2	independent.	What’s	relaFve	posterior?	
P(H1	∧	H2	|	E1,	…,	El)	=	α	P(E1,	…,	El	|	H1	∧	H2)	P(H1	∧	H2)	

	=	α	P(E1,	…,	El	|	H1	∧	H2)	P(H1)	P(H2)	
	=	α	∏l

j=1	P(Ej	|	H1	∧	H2)	P(H1)	P(H2)	
• How	do	we	compute	P(Ej	|	H1∧H2)	?	
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Limita?ons	
• Assume	H1	and	H2	are	independent,	given	E1,	…,	El?	

– P(H1	∧	H2	|	E1,	…,	El)	=	P(H1	|	E1,	…,	El)	P(H2	|	E1,	…,	El)	

• Unreasonable	assumpFon	
– Earthquake	&	Burglar	independent,	but	not	given	Alarm:	

P(burglar	|	alarm,	earthquake)	<<	P(burglar	|	alarm)	

• Doesn’t	allow	causal	chaining:	
– A:	2017	weather;	B:	2017	corn	producFon;	C:	2018	corn	price	
– A	influences	C	indirectly:		A→	B	→	C	
– P(C	|	B,	A)	=	P(C	|	B)	

• Need	richer	representaFon	for	interacFng	hypoth-
eses,	condiFonal	independence	&	causal	chaining	

• Next:	Bayesian	Belief	networks!	



Summary	
• Probability	is	a	rigorous	formalism	for	uncertain	
knowledge	

• Joint	probability	distribuFon	specifies	probability	of	
every	atomic	event	

• Can	answer	queries	by	summing	over	atomic	events	
• But	we	must	find	a	way	to	reduce	joint	size	for	non-
trivial	domains	

• Bayes	rule	lets	us	compute	from	known	condiFonal	
probabiliFes,	usually	in	causal	direcFon	

• Independence	&	condiFonal	independence	provide	
tools	

• Next:	Bayesian	belief	networks	
32	



FrequenFsts	vs.	Bayesians	
hsp://xkcd.com/1132/	



Postscript:	Frequen?sts	vs.	Bayesians		

• Frequen?st	inference	draws	conclusions	
from	sample	data	based	on	frequency	or	
proporFon	of	data	

• Bayesian	inference		uses	Bayes'	rule	to	
update	probability	esFmates	for	hypothesis	
as	addiFonal	evidence	is	learned	

• Differences	are	owen	subtle,	but	can	be	
consequenFal	
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