
Machine	Learning:	
Decision	Trees	

Chapter	18.1-18.3	

Some	material	adopted	from	notes	by	Chuck	Dyer	



Decision	Trees	(DTs)	

• A	supervised	learning	method	used	for	
classificaBon	and	regression	

• Given	a	set	of	training	tuples,	learn	model	to	
predict	one	value	from	the	others	
– Learned	value	typically	a	class	(e.g.	goodRisk)	

• 	ResulBng	model	is	simple	to	understand,	
interpret,	visualize	and	apply	



Learning	a	Concept	

AKributes	
• Size:	large,	small	
• Color:	red,	green,	
blue	
• Shape:	square,	circle	

The	red	groups	are	negaBve	examples,	blue	posiBve	



Training	data	
Size Color Shape class 

Large Green Square Negative 
Large Green Circle Negative 
Small Green Square Positive 
Small Green Circle positive 
Large Red Square Positive 
Large Red Circle Positive 
Small Red Square Positive 
Small Red Circle Positive 
Large Blue Square Negative 
Small Blue Square Positive 
Large Blue Circle Positive 
Small Blue Circle Positive 



A	decision	tree-induced	par::on	
The	red	groups	are	negaBve	examples,	blue	posiBve	

NegaBve	things	are		
big,	green	shapes	and	
big,	blue	squares	



Learning	decision	trees	
• Goal:	Build	a	decision	tree	to	classify	examples	as	
posiBve	or	negaBve	instances	of	a	concept	using	
supervised	learning	from	a	training	set	

• A	decision	tree	is	a	tree	where	
– 	each	non-leaf	node	has	an	
aKribute	(feature)	
– each	leaf	node	has	a	classificaBon	
(+	or	-)	
– each	arc	has	a	possible	value	of	
its	aKribute		

• GeneralizaBon:	allow	for	>2	classes	
– e.g.,	for	stocks,	classify	into	{sell,	hold,	buy}	

Color	

Shape	Size	 +	

+	-	 Size	

+	-	

+	
big	

big	 small	

small	

round	square	

red	green	 blue	



Expressiveness	of	Decision	Trees	
• Can	express	any	funcBon	of	the	input	aKributes,	e.g.	
for	Boolean	funcBons,	truth	table	row	→	path	to	leaf:	

	

•  There’s	a	consistent	decision	tree	for	any	training	set	
with	one	path	to	leaf	for	each	example	(assuming	
determinisBc),	but	it	probably	won't	generalize	to	
new	examples	

•  We	prefer	more	compact	decision	trees	



Induc:ve	learning	and	bias	

• Suppose	that	we	want	to	learn	a	funcBon	f(x)	=	y	and	we’re	
given	sample	(x,y)	pairs,	as	in	figure	(a)	

• There	are	several	hypotheses	we	could	make	about	this	
funcBon,	e.g.:	(b),		(c)	and	(d)	

• A	preference	for	one	over	the	others	reveals	the	bias	of	
our	learning	technique,	e.g.:	
–  prefer	piece-wise	funcBons	
–  prefer	a	smooth	funcBon	
–  prefer	a	simple	funcBon	and	treat	outliers	as	noise	



Preference	bias:	Occam’s	Razor	
• William	of	Ockham	(1285-1347)	

– “non	sunt	mul)plicanda	en)a	praeter	necessitatem” 	
– enBBes	are	not	to	be	mulBplied	beyond	necessity		

• Simplest	consistent	explanaBon	is	the	best	
• Smaller	decision	trees	correctly	classifying	
training	examples	preferred	over	larger	ones	

• Finding	the	smallest	decision	tree	is	NP-hard,	
so	we	use	algorithms	that	find	reasonably	
small	ones	



Hypothesis	spaces	
• How	many	dis:nct	decision	trees	with	n	Boolean	aOributes?	

–  =	number	of	Boolean	funcBons	
–  =	number	of	disBnct	truth	tables	with	2n	rows	=	22n	
–  e.g.,	with	6	Boolean	aKributes,	18,446,744,073,709,551,616	trees	

• How	many	conjunc:ve	hypotheses	(e.g.,	Hungry	∧	¬Rain)?	
–  Each	aKribute	can	be	in	(posiBve),	in	(negaBve),	or	out	

⇒ 3n	disBnct	conjuncBve	hypotheses	
–  e.g.,	with	6	Boolean	aKributes,	729	trees	

• A	more	expressive	hypothesis	space	
–  increases	chance	that	target	funcBon	can	be	expressed	
–  increases	number	of	hypotheses	consistent	with	training	set	
	⇒	may	get	worse	predicBons	in	pracBce	



R&N’s	restaurant	domain	
• Develop	decision	tree	for	decision	patron	makes	
when	deciding	whether	or	not	to	wait	for	a	table	

• Two	classes:	wait,	leave	
• Ten	aKributes:	AlternaBve	available?	Bar	in	
restaurant?	Is	it	Friday?	Are	we	hungry?	How	full	
is	the	restaurant?	How	expensive?	Is	it	raining?	Do	
we	have	reservaBon?	What	type	of	restaurant	is	
it?	EsBmated	waiBng	Bme?	

• Training	set	of	12	examples	
• ~	7000	possible	cases		



AOribute-based	representa:ons	

• Examples	described	by	aKribute	values	(Boolean,	discrete,	conBnuous),	
e.g.,	situaBons	where	I	will/won't	wait	for	a	table	
• ClassificaBon	of	examples	is	posiBve	(T)	or	negaBve	(F)	
• Serves	as	a	training	set	



A	decision	tree	
from	introspec:on	



Issues	
• It’s	like	20	quesBons	
• We	can	generate	many	decision	trees	
depending	on	what	aKributes	we	ask	about	
and	in	what	order	

• How	do	we	decide?	
• What	makes	one	decision	tree	beKer	than	
another:	number	of	nodes?	number	of	
leaves?	maximum	depth?	



ID3	/	C4.5	/	J48	Algorithm	
• Greedy	algorithm	for	decision	tree	construcBon	
developed	by	Ross	Quinlan	circa	1987		

• Top-down	construcBon	of	tree	by	recursively	
selecBng	best	a2ribute	to	use	at	current	node	
– Once	aKribute	selected	for	current	node,	generate	
child	nodes,	one	for	each	possible	value	of	aKribute	

– ParBBon	examples	using	values	of	aKribute,	&	assign	
these	subsets	of	examples	to	appropriate	child	node	

– Repeat	for	each	child	node	unBl	all	examples	
associated	with	node	are	all	posiBve	or	negaBve	



Choosing	the	best	aOribute	
• Key	problem:	choose	aKribute	to	split	a	given	
set	of	examples	

• PossibiliBes	for	choosing	aKribute:	
– Random:	Select	one	at	random		
– Least-Values:	one	with	smallest	#	of	possible	values		
– Most-Values:	one	with	largest	#	of	possible	values		
– Max-Gain:	one	with	largest	expected	informa.on	
gain	–	i.e.,	results	in	smallest	expected	size	of	
subtrees	rooted	at	its	children	

• The	ID3	algorithm	uses	the	max-gain	method	
of	selecBng	the	best	aKribute	



Restaurant	example	

French	

Italian	

Thai	

Burger	
Empty	 Some	 Full	

Y	

Y	

Y	

Y	

Y	

Y	N	

N	

N	

N	

N	

N	

Random:	Patrons	or	Wait-Bme;	Least-values:	Patrons;	Most-values:	Type;	Max-gain:	???	

Patrons	variable	

Ty
pe

	v
ar
ia
bl
e	



Choosing	an	aOribute	
Idea:	good	aKribute	splits	examples	into	
subsets	that	are	(ideally)	all	posi)ve	or	all	
nega)ve	

	
	
	
	
Which	is	beKer:	Patrons?	or	Type?	

stay	
leave	



Spli^ng	
examples		
by	tes:ng	
aOributes	



ID3-induced		
decision	tree	



Compare	the	two	Decision	Trees	



Informa:on	theory	101	
• Sprang	fully	formed	from	Claude	Shannon’s	
seminal	work:	MathemaBcal	Theory	of	
CommunicaBon	in	1948	

• IntuiBons	
– Common	words	(a,	the,	dog)	shorter	than	less	
common	ones	(parlimentarian,	foreshadowing)	

– morse	code:	common	leKers	have	shorter	encodings	

• InformaBon	inherent	in	data/message	(inform-	
aBon	entropy)	measured	in	minimum	number	of	
bits	needed	to	store/send	using	a	good	encoding	



Informa:on	theory	101	
• InformaBon	entropy	...	tells	how	much	
informaBon	there	is	in	an	event.	The	more	
uncertain	or	random	the	event	is,	the	more	
informaBon	it	contains.	

• Receiving	a	message	is	an	event	
• How	much	informaBon	is	in	these	messages	
– The	sun	rose	today!				
– It’s	sunny	today	in	Honolulu!	
– The	coin	toss	is	heads!	
– It’s	sunny	today	in	SeaKle!	
– Life	discovered	on	Mars!	

	

None 

A lot 



Informa:on	theory	101	
• For	n	equally	probable	possible	messages	or	
data	values,	each	has	probability	1/n	

• InformaBon	of	a	message	is	-log(p)	=	log(n)	
e.g.,	with	16	messages,	then	log(16)	=	4	and	we	need	4	
bits	to	idenBfy/send	each	message	

• If	probability	distribuBon	P	(p1,p2	…	pn)	for	n	
messages,	its	informaBon	(aka	H	or	entropy)	is:	

	

I(P)	=	-(p1*log(p1)	+	p2*log(p2)	+	..	+	pn*log(pn))	



Entropy	of	a	distribu:on	
I(P)	=	-(p1*log(p1)	+	p2*log(p2)	+	..	+	pn*log(pn))	
• Examples:	
– If	P	is	(0.5,	0.5)	then	I(P)	=	0.5*1	+	0.5*1	=	1	
– If	P	is	(0.67,	0.33)	then	I(P)	=	-(2/3*log(2/3)	+	
1/3*log(1/3))	=	0.92	

– If	P	is	(1,	0)	then	I(P)	=	1*1	+	0*log(0)	=	0	
• More	uniform	probability	distribuBon,	greater	its	
informaBon:	more	informaBon	is	conveyed	by	a	
message	telling	you	which	event	actually	occurred	

• Entropy	is	the	average	number	of	bits/message	
needed	to	represent	a	stream	of	messages	



Example:	Huffman	code	
• In	1952	MIT	student	David	Huffman	devised	(for	a	
homework	assignment!)	a	coding	scheme	that’s	
opBmal	when	all	data	probabiliBes	are	powers	of	1/2	

• A	Huffman	code	can	be	built	in	the	following	manner:	
– Rank	symbols	in	order	of	probability	of	occurrence	
– Successively	combine	two	symbols	of	lowest	
probability	to	form	a	new	composite	symbol;	
eventually	we	will	build	a	binary	tree	where	each	
node	is	probability	of	all	nodes	beneath	it	

– Trace	path	to	each	leaf,	noBcing	direcBon	at	each	
node	



Huffman	code	example	
M			P	
A		.125	
B		.125	
C		.25	
D		.5	

.5	.5	

1	

.125	.125	

.25	

A	

C	

B	

D	

.25	

0	 1	

0	

0	 1	

1	

M code length prob

A 000 3 0.125 0.375
B 001 3 0.125 0.375
C 01 2 0.250 0.500
D 1 1 0.500 0.500

average message length 1.750

If	we	use	this	code	to	many	
messages	(A,B,C	or	D)	with	this	
probability	distribuBon,	then,	over	
Bme,	the	average	bits/message	
should	approach	1.75	



Informa:on	for	classifica:on	
If	set	T	of	records	is	divided	into	disjoint	exhausBve	classes	
(C1,C2,..,Ck)	by	value	of	class	aKribute,	then	informaBon	
needed	to	idenBfy	class	of	an	element	of	T	is:			

	Info(T)	=	I(P)	
where	P	is	the	probability	distribuBon	of	parBBon	(C1,C2,..,Ck):		

P	=	(|C1|/|T|,	|C2|/|T|,	...,	|Ck|/|T|)	

High	informaBon	

C1 C2 C3 C1 C2 C3 

Lower	informaBon	



Informa:on	for	classifica:on	II	

If	we	further	divide	T	wrt	aKribute	X	into	sets	
{T1,T2,	..,Tn},	the	informaBon	needed	to	idenBfy	class	
of	an	element	of	T	becomes	the	weighted	average	of	
the	informaBon	needed	to	idenBfy	the	class	of	an	
element	of	Ti,	i.e.	the	weighted	average	of	Info(Ti):		

Info(X,T)	=	Σ|Ti|/|T|	*	Info(Ti)	

High	informaBon	

C1 C2 C3 

Low	informaBon	

C1 C2 C3 



Informa:on	gain	

• Gain(X,T)	=	Info(T)	-	Info(X,T)		is	difference	of	
–  info	needed	to	idenBfy	element	of	T	and		
–  info	needed	to	idenBfy	element	of	T	azer	value	of	
aKribute	X	known	

• This	is	gain	in	informaBon	due	to	aKribute	X	
• Used	to	rank	aKributes	and	build	DT	where	
each	node	uses	aKribute	with	greatest	gain	of	
those	not	yet	considered	in	path	from	root	

• Intent:	create	small	DTs	to	minimize	quesBons	



Compu:ng	Informa:on	Gain	
French	

Italian	

Thai	

Burger	

Empty	 Some	 Full	

Y	

Y	

Y	

Y	

Y	

Y	N	

N	

N	

N	

N	

N	

Should	we	ask	
about	restaurant	
type	or	how	many	
patrons	there	are?	

• I(T)	=	?	
• I	(Pat,	T)	=		?	

• I	(Type,	T)	=	?	
Gain	(Patrons,	T)	=	?	
Gain	(Type,	T)							=	?	

I(P) = -(p1*log(p1) + p2*log(p2) + .. + pn*log(pn)) 



I(T)	=		
		-	(.5	log	.5	+	.5	log	.5)	
		=	.5	+	.5	=	1	

I	(Pat,	T)	=		
			2/12	(0)	+	4/12	(0)	+		
			6/12	(-	(4/6	log	4/6	+		
																2/6	log	2/6))		
			=	1/2	(2/3*.6	+		
								1/3*1.6)		
			=	.47	

I	(Type,	T)	=		
			2/12	(1)	+	2/12	(1)	+		
			4/12	(1)	+	4/12	(1)	=	1	

Compu:ng	informa:on	gain	
French	

Italian	

Thai	

Burger	

Empty	 Some	 Full	

Y	

Y	

Y	

Y	

Y	

Y	N	

N	

N	

N	

N	

N	

Gain	(Patrons,	T)	=	1	-	.47	=	.53	
Gain	(Type,	T)	=	1	–	1	=	0	

I(P) = -(p1*log(p1) + p2*log(p2) + .. + pn*log(pn)) 



The	ID3	algorithm	builds	a	decision	tree,	given	a	set	of	non-categorical	aKributes	C1,	C2,	..,	
Cn,	the	class	aKribute	C,	and	a	training	set	T	of	records	
 

function ID3(R:input attributes, C:class attribute, 
S:training set) returns decision tree; 

   If S is empty, return single node with value Failure; 

   If every example in S has same value for C, return  
   single node with that value; 

   If R is empty, then return a single node with most 
   frequent of the values of C found in examples S;  
   # causes errors -- improperly classified record 

   Let D be attribute with largest Gain(D,S) among R;  

   Let {dj| j=1,2, .., m} be values of attribute D; 

   Let {Sj| j=1,2, .., m} be subsets of S consisting of     
             records with value dj for attribute D; 

   Return tree with root labeled D and arcs labeled  
     d1..dm going to the trees ID3(R-{D},C,S1). . . 
     ID3(R-{D},C,Sm); 



How	well	does	it	work?	
Case	studies	show	that	decision	trees	ozen	at	
least	as	accurate	as	human	experts	
– Study	for	diagnosing	breast	cancer	had	humans	
correctly	classifying	the	examples	65%	of	the	
Bme;	DT	classified	72%	correct	

– BriBsh	Petroleum	designed	DT	for	gas-oil	
separaBon	for	offshore	oil	pla}orms	that		
replaced	an	earlier	rule-based	expert	system	

– Cessna	designed	an	airplane	flight	controller	using	
90,000	examples	and	20	aKributes	per	example	



Extensions	of	ID3	
• Using	gain	raBos	
• Real-valued	data	
• Noisy	data	and	overfi�ng	
• GeneraBon	of	rules	
• Se�ng	parameters	
• Cross-validaBon	for	experimental	validaBon	of	
performance	

• C4.5	is	an	extension	of	ID3	that	accounts	for		
unavailable	values,	conBnuous	aKribute	value	
ranges,	pruning	of	decision	trees,	rule	derivaBon,	
and	so	on	



Using	gain	ra:os	
• InformaBon	gain	criterion	favors	aKributes	that	have	a	
large	number	of	values	
– An	aKribute	D	with	a	disBnct	value	for	each	record	
has	Info(D,T)	0,	thus	Gain(D,T)	is	maximal	

• To	compensate,	use	GainRaBo	instead	of	Gain:	
GainRaBo(D,T)	=	Gain(D,T)	/	SplitInfo(D,T)	

• SplitInfo(D,T)	is	informaBon	due	to	split	of	T	on	basis	
of	value	of	categorical	aKribute	D	
SplitInfo(D,T)		=		I(|T1|/|T|,	|T2|/|T|,	..,	|Tm|/|T|)	

where	{T1,	…	Tm}	is	parBBon	of	T	induced	by	value	of	D	



Compu:ng	gain	ra:o	
French	

Italian	

Thai	

Burger	

Empty	 Some	 Full	

Y	

Y	

Y	

Y	

Y	

Y	N	

N	

N	

N	

N	

N	

• I(T)	=	1	
• I	(Pat,	T)	=	.47	

• I	(Type,	T)	=	1	

Gain	(Pat,	T)	=.53	
Gain	(Type,	T)	=	0	
	
SplitInfo	(Pat,	T)	=	-	(1/6	log	1/6	+	1/3	log	1/3	+	1/2	log	1/2)	=	1/6*2.6	+	1/3*1.6	+	1/2*1	
				=	1.47	

SplitInfo	(Type,	T)	=	1/6	log	1/6	+	1/6	log	1/6	+	1/3	log	1/3	+	1/3	log	1/3	
				=	1/6*2.6	+	1/6*2.6	+	1/3*1.6	+	1/3*1.6	=	1.93	

GainRa:o	(Pat,	T)	=	Gain	(Pat,	T)	/	SplitInfo(Pat,	T)	=	.53	/	1.47	=	.36	

GainRaBo	(Type,	T)	=	Gain	(Type,	T)	/	SplitInfo	(Type,	T)	=	0	/	1.93	=	0	



Real-valued	data	

• Select	thresholds	defining	intervals	so	each	
becomes	a	discrete	value	of	aKribute	

• Use	heurisBcs,	e.g.	always	divide	into	quarBles	
• Use	domain	knowledge,	e.g.	divide	age	into	
infant	(0-2),	toddler	(3-5),	school-aged	(5-8)	

• 	Or	treat	this	as	another	learning	problem	
– Try	different	ways	to	discreBze	conBnuous	variable;	
see	which	yield	beKer	results	w.r.t.	some	metric	

– E.g.,	try	midpoint	between	every	pair	of	values	



Noisy	data	

Many	kinds	of	noise	can	occur	in	training	data	
• Two	examples	have	same	aKribute/value	pairs,	
but	different	classificaBons		

• Some	aKribute	values	wrong	due	to	errors	in	
the	data	acquisiBon	or	preprocessing	phase		

• The	classificaBon	is	wrong	(e.g.,	+	instead	of	-)	
because	of	some	error		

• Some	aKributes	irrelevant	to	decision-making,	
e.g.,	color	of	a	die	is	irrelevant	to	its	outcome	



Overfi^ng	

• Overfi=ng	occurs	when	a	staBsBcal	model	
describes	random	error	or	noise	instead	of	
underlying	relaBonship	

• If		hypothesis	space	has	many	dimensions	(large	
number	of	aKributes)	we	may	find	meaningless	
regularity	in	the	data	that	is	irrelevant	to	the	
true,	important,	disBnguishing	features	

• If	we	have	too	liKle	training	data,	even	a	
reasonable	hypothesis	space	can	overfit	



Overfi^ng	

• Fix	by	by	removing	irrelevant	features	
–  E.g.,	remove	‘year	observed’,	‘month	
observed’,	‘day	observed’,	‘observer	
name’	from	feature	vector	

• Fix	by	ge�ng	more	training	data	
• Fix	by	pruning	lower	nodes	in	the	decision	tree	
–  E.g.,	if	gain	of	best	aKribute	at	a	node	is	
below	a	threshold,	stop	and	make	this	node	
a	leaf	rather	than	generaBng	children	nodes	



Pruning	decision	trees	
• Pruning	a	decision	tree	is	done	by	replacing	a	whole	
subtree	by	a	leaf	node	

• Replacement	takes	place	if	the	expected	error	rate	
in	the	subtree	is	greater	than	in	the	single	leaf,	e.g.,	
– Training:	1	training	red	success	and	2	training	blue	failures	
– Test:	3	red	failures	and	one	blue	success	
– Consider	replacing	this	subtree	by	a	single	Failure	node.		

• Azer	replacement,	only	2	errors	instead	of	5	

Color	

1	success	
0	failure	

0	success	
2	failures	

red	 blue	

Color	

1	success	
3	failure	

1	success	
1	failure	

red	 blue	 2	success	
4	failure	

FAILURE	Training	 Test	 Pruned	



Conver:ng	decision	trees	to	rules	
• It’s	easy	to	derive	rules	from	a	decision	tree:	write	a	
rule	for	each	path	from	the	root	to	a	leaf	

• In	that	rule	the	lez-hand	side	is	built	from	the	label	
of	the	nodes	and	the	labels	of	the	arcs	

• The	resulBng	rules	set	can	be	simplified:	
– Let	LHS	be	the	lez	hand	side	of	a	rule	
– LHS’	obtained	from	LHS	by	eliminaBng	some	condiBons		
– Replace	LHS	by	LHS'	in	this	rule	if	the	subsets	of	the	
training	set	saBsfying	LHS	and	LHS'	are	equal	

– A	rule	may	be	eliminated	by	using	meta-condiBons	such	
as	“if	no	other	rule	applies”	



Summary:	decision	tree	learning	
• Widely	used	learning	methods	in	pracBce	for	
problems	with	relaBvely	few	features	

• Strengths	
– Fast	and	simple	to	implement	
– Can	convert	result	to	a	set	of	easily	interpretable	rules	
– Empirically	valid	in	many	commercial	products	
– Handles	noisy	data	
– Easy	for	people	to	understand	

• Weaknesses	
– Univariate	splits/parBBoning	using	only	one	aKribute	at	a	
Bme	so	limits	types	of	possible	trees	

– Large	decision	trees	may	be	hard	to	understand	
– Requires	fixed-length	feature	vectors		
– Non-incremental	(i.e.,	batch	method)	


