
Logical	
Inference	2	
Rule-based	
reasoning	

Chapter	9	

Some	material	adopted	from	notes	by	Andreas	Geyer-Schulz,,	Chuck	Dyer,	and	Mary	Getoor	



Automated	inference	for	FOL	
• Automated	inference	for	FOL	is	harder	than	PL	
– Variables	can	potenHally	take	on	an	infinite	number	
of	possible	values	from	their	domains	

– Hence	there	are	potenHally	an	infinite	number	of	
ways	to	apply	the	Universal	EliminaHon	rule	

• Godel's	Completeness	Theorem	says	that	FOL	
entailment	is	only	semi-decidable	
– If	a	sentence	is	true	given	a	set	of	axioms,	there	is	a	
procedure	that	will	determine	this	

– If	the	sentence	is	false,	there’s	no	guarantee	a	
proce-dure	will	ever	determine	this	—	it	may	never	
halt	



Generalized	Modus	Ponens	

• Modus	Ponens	
– P,		P=>Q			|=	Q	

• Generalized	Modus	Ponens	(GMP)	extends	this	to	
rules	in	FOL	

• Combines	And-IntroducHon,	Universal-Elimina-
Hon,	and	Modus	Ponens,	e.g.		
– from	P(c)		and		Q(c)	and	∀x	P(x)∧Q(x)	→	R(x)	
derive	R(c)		

• Must	deal	with	
– More	than	one	condiHon	on	leY	side	of	rule	
– variables	



Generalized	Modus	Ponens	
• General	case:	Given	

– atomic	sentences	P1,	P2,	...,	PN	
–  implica?on	sentence	(Q1	∧	Q2	∧	...	∧	QN)	→	R	

•  Q1,	...,	QN	and	R	are	atomic	sentences		
– subs?tu?on	subst(θ,	Pi)	=	subst(θ,	Qi)	for	i=1,...,N	
– Derive	new	sentence:	subst(θ,	R)			

• SubsHtuHons	
– subst(θ,	α)	denotes	the	result	of	applying	a	set	of	
subsHtuHons	defined	by	θ	to	the	sentence	α	

– A	subsHtuHon	list	θ	=	{v1/t1,	v2/t2,	...,	vn/tn}	means	to	
replace	all	occurrences	of	variable	symbol	vi	by	term	ti	

– SubsHtuHons	made	in	leY-to-right	order	in	the	list	
– subst({x/Cheese,	y/Mickey},	eats(y,x))	=	
eats(Mickey,	Cheese)		



Our	rules	are	Horn	clauses	
• A	Horn	clause	is	a	sentence	of	the	form:	
P1(x)	∧	P2(x)	∧	...	∧	Pn(x)	→	Q(x)		

where		
– 	≥	0	Pis	and	0	or	1	Q	
– Pis	and	Q	are	posiHve	(i.e.,	non-negated)	literals	

• Equivalently:	P1(x)	∨	P2(x)	…	∨	Pn(x)	where	the	
Pi	are	all	atomic	and	at	most	one	is	posiHve	

• Prolog	is	based	on	Horn	clauses	
• Horn	clauses	represent	a	subset	of	the	set	of	
sentences	representable		in	FOL	



Horn	clauses	II	
• Special	cases	

– Typical	rule:	P1	∧	P2	∧	…	Pn	→	Q	
– Constraint:	P1	∧	P2	∧	…	Pn	→	false	
– A	fact:	true	→	Q	

• These	are	not	Horn	clauses:	
–  dead(x)	∨	alive(x)	
–  married(x,	y)	→	loves(x,	y)	∨	hates(x,	y)	
–  ¬likes(john,	mary)	
–  ¬likes(x,	y)	→	hates(x,	y)	

• Can’t	assert	or	conclude	disjuncHons,	no	negaHon	
• No	wonder	reasoning	over	Horn	clauses	is	easier	



Horn	clauses	III	
• Where	are	the	quanHfiers?	
– Variables	in	conclusion	are	universally	quanHfied	
– Variables	only	in	premises	are	existenHally	quanHfied	

• Examples:		
– parent(P,X)	→	isParent(P)	
∀P	∃X	parent(P,X)	→	isParent(P)	

– parent(P1,	X)	∧	parent(X,	P2)	→	grandParent(P1,	P2)	
∀P1,P2	∃X	parent(P1,X)	∧	parent(X,	P2)	→	
grandParent(P1,	P2)	

– Prolog:	grandParent(P1,P2)	:-	parent(P1,X),	parent(X,P2)	
	



Forward	&	Backward	Reasoning	

• We	usually	talk	about	two	reasoning	
strategies:	forward	and	backward	‘chaining’	

• Both	are	equally	powerful	
• You	can	also	have	a	mixed	strategy	



Forward	chaining	

• Proofs	start	with	the	given	axioms/premises	
in	KB,	deriving	new	sentences	using	GMP	
unHl	the	goal/query	sentence	is	derived	

• This	defines	a	forward-chaining	inference	
procedure	because	it	moves	“forward”	
from	the	KB	to	the	goal	[eventually]	

• Inference	using	GMP	is	sound	and	complete	
for	KBs	containing	only	Horn	clauses	



Forward	chaining	algorithm	



Forward	chaining	example	

•  KB:			
–  allergies(X)	→	sneeze(X)	
–  cat(Y)	∧	allergicToCats(X)	→	allergies(X)	
–  cat(felix)	
–  allergicToCats(mary)	

•  Goal:	
–  sneeze(mary)	



Backward	chaining	
• Backward-chaining	deducHon	using	GMP	is	
complete	for	KBs	containing	only	Horn	clauses	

• Start	with	goal	query,	find	rules	with	that	
conclusion,	then	prove	each	rule	antecedent	

• Keep	going	unHl	you	reach	premises	
• Avoid	loops:	check	if	new	subgoal	is	already	on	
goal	stack	

• Avoid	repeated	work:	check	if	new	subgoal	
– Has	already	been	proved	true	
– Has	already	failed	



Backward	chaining	algorithm	



Backward	chaining	example	

•  KB:			
–  allergies(X)	→	sneeze(X)	
–  cat(Y)	∧	allergicToCats(X)	→	allergies(X)	
–  cat(felix)	
–  allergicToCats(mary)	

•  Goal:	
–  sneeze(mary)	



Forward	vs.	backward	chaining	

• Forward	chaining	is	data-driven 		
– AutomaHc,	unconscious	processing,	e.g.,	object	
recogniHon,	rouHne	decisions	

– May	do	lots	of	work	that	is	irrelevant	to	the	goal	
– Efficient	when	you	want	to	compute	all	conclusions	

• Backward	chaining	is	goal-driven,	beter	for	
problem-solving	and	query	answering	
– Where	are	my	keys?		How	do	I	get	to	my	next	class?	
– Complexity	of	BC	can	be	much	less	than	linear	in	the	size	
of	the	KB	

– Efficient	when	you	want	one	or	a	few	decisions	
– Good	where	the	underlying	facts	are	changing	



Mixed	strategy	
• Many	pracHcal	reasoning	systems	do	both	
forward	and	backward	chaining	

• The	way	you	encode	a	rule	determines	how	it	
is	used,	as	in	
%	this	is	a	forward	chaining	rule	
spouse(X,Y)	=>	spouse(Y,X).	
%	this	is	a	backward	chaining	rule	
wife(X,Y)	<=	spouse(X,Y),	female(X).	

• Given	a	set	of	rules	and	the	kind	of	reasoning	
needed,	it’s	possible	to	decide	which	to	
encode	as	FC	and	which	as	BC	rules.	



Completeness	of	GMP	

• GMP	(using	forward	or	backward	chaining)	is	
complete	for	KBs	that	contain	only	Horn	
clauses	

• not	complete	for	simple	KBs	with	non-Horn	
clauses	

• What	is	entailed	by	the	following	sentences:	
1. (∀x)	P(x)	→	Q(x)	
2. (∀x)	¬P(x)	→	R(x)	
3. (∀x)	Q(x)	→	S(x)	
4. (∀x)	R(x)	→	S(x)	
	
	



Completeness	of	GMP	

• The	following	entail	that	S(A)	is	true:	
1. (∀x)	P(x)	→	Q(x)	
2. (∀x)	¬P(x)	→	R(x)	
3. (∀x)	Q(x)	→	S(x)	
4. (∀x)	R(x)	→	S(x)	

• If	we	want	to	conclude	S(A),	with	GMP	we	
cannot,	since	the	second	one	is	not	a	Horn	
clause	

• It	is	equivalent	to	P(x)	∨	R(x)	



How	about	in	Prolog?	

Try	encoding	this	in	Prolog	
1. q(X)	:-	p(X).	
2. r(X)	:-	neg(p(X)).	
3. s(X)	:-	q(X).	
4. s(X)	:-	r(X).	

–  We	should	not	use	\+	or	not	(in	SWI)	for	
negaHon	since	it	means	“negaGon	as	failure”	

–  Prolog	explores	possible	proofs	independently	
–  It	can’t	take	a	larger	view	and	realize	that	one	

branch	must	be	true	since	p(x)	∨	~p(x)	is	always	true	
	

1.  		(∀x)	P(x)	→	Q(x)	
2.  		(∀x)	¬P(x)	→	R(x)	
3.  		(∀x)	Q(x)	→	S(x)	
4.  		(∀x)	R(x)	→	S(x)	


