

Logical Inference 2 Rule-based reasoning Chapter 9

Some material adopted from notes by Andreas Geyer-Schulz,, Chuck Dyer, and Mary Getoor

Automated inference for FOL

- Automated inference for FOL is harder than PL
	- $-$ Variables can potentially take on an *infinite* number of possible values from their domains
	- $-$ Hence there are potentially an *infinite* number of ways to apply the Universal Elimination rule
- •*Godel's Completeness Theorem* says that FOL entailment is only *semi-decidable*
	- $-$ If a sentence is **true** given a set of axioms, there is a procedure that will determine this
	- $-$ If the sentence is **false**, there's no guarantee a proce-dure will ever determine this $-$ it **may never halt**

Generalized Modus Ponens

• Modus Ponens

 $-P$, $P \Rightarrow Q$ $|= Q$

- Generalized Modus Ponens (GMP) extends this to rules in FOL
- Combines And-Introduction, Universal-Elimination, and Modus Ponens, e.g.
	- $-from P(c)$ and $Q(c)$ and $\forall x P(x) \land Q(x) \rightarrow R(x)$ *derive R(c)*
- Must deal with
	- $-$ More than one condition on left side of rule
	- variables

Generalized Modus Ponens

- **General case: Given**
	- $-$ **atomic sentences** P_1 , P_2 , ..., P_N
	- **implication sentence** $(Q_1 \land Q_2 \land ... \land Q_N)$ → R
		- Q_1 , ..., Q_N and R are atomic sentences
	- **substitution** subst(θ, P_i) = subst(θ, Q_i) for i=1,...,N
	- $-$ **Derive new sentence: subst(θ, R)**
- Substitutions
	- $-$ subst(θ , α) denotes the result of applying a set of substitutions defined by θ to the sentence α
	- A substitution list $\theta = \{v_1/t_1, v_2/t_2, ..., v_n/t_n\}$ means to replace all occurrences of variable symbol v_i by term t_i
	- $-$ Substitutions made in left-to-right order in the list
	- $-$ subst({x/Cheese, y/Mickey}, eats(y,x)) = eats(Mickey, Cheese)

Our rules are Horn clauses

• A Horn clause is a sentence of the form:

 $P_1(x) \wedge P_2(x) \wedge ... \wedge P_n(x) \rightarrow Q(x)$

where

- \geq 0 P_is and 0 or 1 Q
- -P_is and Q are positive (i.e., non-negated) literals
- Equivalently: $P_1(x)$ *∨* $P_2(x)$ *… ∨* $P_n(x)$ where the P_i are all atomic and *at most one* is positive
- Prolog is based on Horn clauses
- Horn clauses represent a *subset* of the set of sentences representable in FOL

Horn clauses II

• Special cases

- $-$ *Typical rule:* $P_1 \wedge P_2 \wedge ... P_n \rightarrow Q$
- $-$ *Constraint:* P_1 ∧ P_2 ∧ … P_n → false
- $-A$ *fact:* true \rightarrow Q
- These are not Horn clauses:
	- $-$ dead(x) \vee alive(x)
	- $-$ married(x, y) \rightarrow loves(x, y) \vee hates(x, y)
	- \neg likes(john, mary)
	- \neg likes(x, y) \rightarrow hates(x, y)
- Can't assert or conclude disjunctions, no negation
- No wonder reasoning over Horn clauses is easier

Horn clauses III

- Where are the quantifiers?
- Variables in conclusion are universally quantified
- $-$ Variables only in premises are existentially quantified
- •Examples:
- $-parent(P,X) \rightarrow isParent(P)$ $\forall P \exists X$ parent(P,X) \rightarrow isParent(P)
- $-parent(P1, X) \wedge parent(X, P2) \rightarrow grandParent(P1, P2)$ \forall P1,P2 \exists X parent(P1,X) \land parent(X, P2) \rightarrow grandParent(P1, P2)
- $-$ Prolog: grandParent(P1,P2) :- parent(P1,X), parent(X,P2)

Forward & Backward Reasoning

- We usually talk about two reasoning strategies: forward and backward 'chaining'
- Both are equally powerful
- You can also have a mixed strategy

Forward chaining

- Proofs start with the given axioms/premises in KB, deriving new sentences using GMP until the goal/query sentence is derived
- This defines a **forward-chaining** inference procedure because it moves "forward" from the KB to the goal [eventually]
- •Inference using GMP is **sound** and **complete** for KBs containing only Horn clauses

Forward chaining algorithm

procedure FORWARD-CHAIN(KB, p)

if there is a sentence in KB that is a renaming of p **then return** Add p to KB for each $(p_1 \wedge ... \wedge p_n \Rightarrow q)$ in KB such that for some i, UNIFY $(p_i, p) = \theta$ succeeds do FIND-AND-INFER $(KB, [p_1, \ldots, p_{i-1}, p_{i+1}, \ldots, p_n], q, \theta)$ end

procedure FIND-AND-INFER(*KB*, *premises*, *conclusion*, θ)

```
if premises = [] then
    FORWARD-CHAIN(KB, SUBST(\theta, conclusion))
else for each p' in KB such that UNIFY(p', SUBST(\theta, FIRST(premises))) = \theta_2 do
    FIND-AND-INFER(KB, REST(premises), conclusion, COMPOSE(\theta, \theta<sub>2</sub>))
end
```
Forward chaining example

- \bullet KB:
	- $-$ allergies(X) \rightarrow sneeze(X)
	- $-$ cat(Y) \land allergicToCats(X) \rightarrow allergies(X)
	- cat(felix)
	- allergicToCats(mary)
- Goal:
	- sneeze(mary)

Backward chaining

- **Backward-chaining** deduction using GMP is **complete** for KBs containing only Horn clauses
- Start with goal query, find rules with that conclusion, then prove each rule antecedent
- Keep going until you reach premises
- Avoid loops: check if new subgoal is already on goal stack
- Avoid repeated work: check if new subgoal
	- $-$ Has already been proved true
	- –Has already failed

Backward chaining algorithm

function BACK-CHAIN(KB, q) returns a set of substitutions

BACK-CHAIN-LIST $(KB, [q], \{\})$

function BACK-CHAIN-LIST(*KB*, *glist*, θ) **returns** a set of substitutions inputs: KB, a knowledge base *glist*, a list of conjuncts forming a query (θ already applied) θ , the current substitution static: *answers*, a set of substitutions, initially empty if *qlist* is empty then return $\{\theta\}$ $q \leftarrow$ FIRST(*qlist*) for each q'_i in KB such that $\theta_i \leftarrow \text{UNIFY}(q, q'_i)$ succeeds do Add COMPOSE(θ , θ _i) to *answers* end for each sentence $(p_1 \wedge ... \wedge p_n \Rightarrow q'_i)$ in KB such that $\theta_i \leftarrow \text{UNIFY}(q, q'_i)$ succeeds do answers \leftarrow BACK-CHAIN-LIST(KB, SUBST(θ_i , [$p_1 \ldots p_n$]), COMPOSE(θ , θ_i)) U answers

end

return the union of BACK-CHAIN-LIST(KB, REST(*glist*), θ) for each $\theta \in$ *answers*

Backward chaining example

- \bullet KB:
	- $-$ allergies(X) \rightarrow sneeze(X)
	- $-$ cat(Y) \land allergicToCats(X) \rightarrow allergies(X)
	- cat(felix)
	- allergicToCats(mary)
- Goal:
	- sneeze(mary)

Forward vs. backward chaining

- •Forward chaining is *data-driven*
	- $-$ Automatic, unconscious processing, e.g., object recognition, routine decisions
	- $-$ May do lots of work that is irrelevant to the goal
	- Efficient when you want to compute all conclusions
- Backward chaining is goal-driven, better for problem-solving and query answering
	- Where are my keys? How do I get to my next class?
	- Complexity of BC can be much less than linear in the size of the KB
	- Efficient when you want one or a few decisions
	- $-$ Good where the underlying facts are changing

Mixed strategy

- Many practical reasoning systems do both forward and backward chaining
- The way you encode a rule determines how it is used, as in

% this is a forward chaining rule

```
spouse(X,Y) \Rightarrow spouse(Y,X).
```
% this is a backward chaining rule

wife(X,Y) <= spouse(X,Y), female(X).

• Given a set of rules and the kind of reasoning needed, it's possible to decide which to encode as FC and which as BC rules.

Completeness of GMP

- GMP (using forward or backward chaining) is complete for KBs that contain only Horn clauses
- *not* complete for simple KBs with non-Horn **clauses**
- What is entailed by the following sentences: $1.(\forall x) P(x) \rightarrow Q(x)$ $2.(\forall x) \neg P(x) \rightarrow R(x)$ $3.(\forall x) Q(x) \rightarrow S(x)$ 4.($\forall x$) R(x) \rightarrow S(x)

Completeness of GMP

- The following entail that $S(A)$ is true:
	- $1.(\forall x) P(x) \rightarrow Q(x)$ $2.(\forall x) \neg P(x) \rightarrow R(x)$ $3.(\forall x) Q(x) \rightarrow S(x)$ 4.($\forall x$) R(x) \rightarrow S(x)
- If we want to conclude $S(A)$, with GMP we cannot, since the second one is not a Horn clause
- It is equivalent to $P(x) \vee R(x)$

How about in Prolog?

Try encoding this in Prolog

- 1. $q(X)$:- $p(X)$.
- 2. $r(X)$:- $neg(p(X))$.
- $3. s(X) q(X)$.
- 4. $s(X)$:- $r(X)$.
- 1. $(\forall x) P(x) \rightarrow Q(x)$
- 2. $(\forall x) \neg P(x) \rightarrow R(x)$

3.
$$
(\forall x) Q(x) \rightarrow S(x)
$$

4.
$$
(\forall x) R(x) \rightarrow S(x)
$$

- We should not use **\+** or **not** (in SWI) for negation since it means "*negation as failure*"
- Prolog explores possible proofs independently
- It can't take a larger view and realize that one **branch must be true since p(x) v ~p(x)** is always true