
Logical	
Inference	1	
introduc)on	

Chapter	9	
Some	material	adopted	from	notes	by	

Andreas	Geyer-Schulz,,	Chuck	Dyer,	and	Mary	
Getoor	

Overview	
• A:	Model	checking	for	proposi)onal	logic	
• Rule	based	reasoning	in	first-order	logic	
– Inference	rules	and	generalized	modes	ponens	
– Forward	chaining	
– Backward	chaining	

• Resolu)on-based	reasoning	in	first-order	logic	
– Clausal	form	
– Unifica)on	
– Resolu)on	as	search	

• Inference	wrap	up	

From	Sa5sfiability	to	Proof	

• To	see	if	a	sa)sfiable	KB	entails	sentence	S,	
see	if	KB	∧	¬S	is	sa)sfiable	
– If	it	is	not,	then	the	KB	entails	S	
– If	it	is,	then	the	KB	does	not	email	S	
– This	is	a	refuta)on	proof	

• Consider	the	KB	with	(P,	P=>Q,	~P=>R)	
– Does	the	KB	it	entail	Q?		R?	

Does	the	KB	entail	Q?		 KB
P

P=>Q
~P=>R

P ~P v Q P v R
P P=>Q ~P => R

~Q
~Q

Q

 An empty clause represents a
contradiction

We assume that every sentence in the KB is true. Adding ~Q to the
KB yields a contradiction, so ~Q must be false, so Q must be true.

Does	the	KB	entail	R?		 KB
P

P=>Q
~P=>R

P ~P v Q P v R
P P=>Q ~P => R

~R
~R

Q P Q v R

Q
Adding ~R to KB does not produce a contradiction after drawing all
possible conclusions, so it could be False, so KB doesn’t entail R.

Proposi5onal	Logic	Model	checking	

• Given	KB,	does	a	sentence	S	hold?	
– All	of	the	logic	variables	in	S	must	be	in	the	KB	

• Basically	generate	and	test:			
– Consider	models	M	in	which	every	sentence	in	
the	KB	is	TRUE	

– If	∀M	S	,	then	S	is	provably	true	
– If	∀M	¬S,	then	S	is	provably	false	
– Otherwise	(∃M1	S	∧	∃M2	¬S):	S	is	sa5sfiable	
but	neither	provably	true	or	provably	false	

Efficient	PL	model	checking	(1)	
Davis-Putnam	algorithm	(DPLL)	is	generate-and-	
test	model	checking	with	several	op)miza)ons:	
	

–  Early	termina,on:	short-circui)ng	of	disjunc)on/
conjunc)on	

– Pure	symbol	heuris,c:	symbols	appearing	only	negated	
or	un-negated	must	be	FALSE/TRUE	respec)vely	

	

e.g.,	in	[(A∨¬B),	(¬B∨¬C),	(C∨A)]	A	&	B	are	pure,	C	impure.	
Make	pure	symbol	literal	true:	if	there’s	a	model	for	S,	making	
pure	symbol	true	is	also	a	model	

– Unit	clause	heuris,c:	Symbols	in	a	clause	by	itself	can	
immediately	be	set	to	TRUE	or	FALSE	

Using	the	AIMA	Code	
python> python
Python ...
>>> from logic import *
>>> expr('P & P==>Q & ~P==>R')
((P & (P >> Q)) & (~P >> R))

>>> dpll_satisfiable(expr('P & P==>Q & ~P==>R'))
{R: True, P: True, Q: True}

>>> dpll_satisfiable(expr('P & P==>Q & ~P==>R & ~R'))
{R: False, P: True, Q: True}

>>> dpll_satisfiable(expr('P & P==>Q & ~P==>R & ~Q'))
False

>>>

expr	parses	a	string,	and	
returns	a	logical	expression	

dpll_sa)sfiable	returns	a	
model	if	sa)sfiable	else	False	

The	KB	entails	Q	but	does	not	
email	R	

Efficient	PL	model	checking	(2)	
• WalkSAT	is	a	local	search	for	sa)sfiability:	Pick	a	
symbol	to	flip	(toggle	TRUE/FALSE),	either	using	
min-conflicts	or	choosing	randomly	

• …or	you	can	use	any	local	or	global	search	
algorithm!	

• There	are	many	model	checking	algorithms	and	
systems	
– See	for	example,	MiniSat	
– Interna)onal	SAT	Compe))on	(2003…2016)	

AIMA	KB	Class	>>> kb1 = PropKB()
>>> kb1.clauses
[]
>>> kb1.tell(expr('P==>Q & ~P==>R'))
>>> kb1.clauses
[(Q | ~P), (R | P)]
>>> kb1.ask(expr('Q'))
False
>>> kb1.tell(expr('P'))
>>> kb1.clauses
[(Q | ~P), (R | P), P]
>>> kb1.ask(expr('Q'))
{}
>>> kb1.retract(expr('P'))
>>> kb1.clauses
[(Q | ~P), (R | P)]
>>> kb1.ask(expr('Q'))
False

PropKB	is	a	subclass	

A	sentence	is	converted	to	
CNF	and	the	clauses	added	

The	KB	does	not	entail	Q	

Aler	adding	P	the	KB	does	
entail	Q	

Retrac)ng	P	removes	it	and	
the	KB	no	longer	entails	Q	

Reminder:	Inference	rules	for	FOL	

• Inference	rules	for	proposi)onal	logic	apply	to	
FOL	as	well	
– Modus	Ponens,	And-Introduc)on,	And-Elimina)on,	…	

• New	(sound)	inference	rules	for	use	with	
quan)fiers:		
– Universal	elimina)on	
– Existen)al	introduc)on	
– Existen)al	elimina)on	
– Generalized	Modus	Ponens	(GMP)	

