

Logical Inference 1

introduction

Chapter 9

Some material adopted from notes by Andreas Geyer-Schulz,, Chuck Dyer, and Mary

Overview

- A: Model checking for propositional logic
- Rule based reasoning in first-order logic
 - Inference rules and generalized modes ponens
 - Forward chaining
 - Backward chaining
- Resolution-based reasoning in first-order logic
 - Clausal form
 - Unification
 - Resolution as search
- Inference wrap up

From Satisfiability to Proof

- To see if a satisfiable KB entails sentence S, see if KB ∧ ¬S is satisfiable
 - -If it is not, then the KB entails S
 - -If it is, then the KB does not email S
 - -This is a refutation proof
- Consider the KB with (P, P=>Q, ~P=>R)

– Does the KB it entail Q? R?

We assume that every sentence in the KB is true. Adding ~Q to the KB yields a contradiction, so ~Q must be false, so Q must be true.

Adding ~R to KB does not produce a contradiction after drawing all possible conclusions, so it could be False, so KB doesn't entail R.

Propositional Logic Model checking

- Given KB, does a sentence S hold?
 - -All of the logic variables in S must be in the KB
- Basically generate and test:
 - -Consider models M in which every sentence in the KB is TRUE
 - $-If \forall M S$, then S is **provably true**
 - $-If \forall M \neg S$, then S is **provably false**
 - -Otherwise ($\exists M1 S \land \exists M2 \neg S$): S is satisfiable but neither provably true or provably false

Efficient PL model checking (1)

<u>Davis-Putnam algorithm</u> (DPLL) is <u>generate-and-</u> <u>test</u> model checking with several optimizations:

- *Early termination:* <u>short-circuiting</u> of disjunction/ conjunction
- Pure symbol heuristic: symbols appearing only negated or un-negated must be FALSE/TRUE respectively

e.g., in $[(A \lor \neg B), (\neg B \lor \neg C), (C \lor A)] \land \& B are pure, C impure.$ Make pure symbol literal true: if there's a model for S, making pure symbol true is also a model

 Unit clause heuristic: Symbols in a clause by itself can immediately be set to TRUE or FALSE

Using the AIMA Code

python> python

Python ...

>>> from logic import *

>>> expr('P & P==>Q & ~P==>R')

((P & (P >> Q)) & (~P >> R))

>>> dpll_satisfiable(expr('P & P==>Q & ~P==>R'))
{R: True, P: True, Q: True}

>>> dpll_satisfiable(expr('P & P==>Q & ~P==>R & ~R'))
{R: False, P: True, Q: True}

>>> dpll_satisfiable(expr('P & P==>Q & ~P==>R & ~Q')) False

The KB entails Q but does not email R

>>>

expr parses a string, and returns a logical expression

dpll_satisfiable returns a model if satisfiable else False

Efficient PL model checking (2)

- <u>WalkSAT</u> is a local search for satisfiability: Pick a symbol to flip (toggle TRUE/FALSE), either using min-conflicts or choosing randomly
- ...or you can use *any* local or global search algorithm!
- There are many model checking algorithms and systems
 - -See for example, MiniSat
 - –<u>International SAT Competition</u> (2003...2016)

>>>	kb1 = PropKB()	AIMA KR Class
>>>	kb1.clauses	
[]		PropKB is a subclass
>>>	<pre>kb1.tell(expr('P==>Q & ~P==>R'))</pre>	
>>>	kb1.clauses	
[(Q	~P), (R P)]	A contance is converted to
>>>	kb1.ask(expr('Q'))	CNF and the clauses added
False		
>>>	kb1.tell(expr('P'))	
>>>	kb1.clauses	The KB does not entail Q
[(Q	<pre>~P), (R P), P]</pre>	
>>>	kb1.ask(expr('Q'))	
{ }		After adding P the KB does
>>>	kb1.retract(expr('P'))	entairQ
>>>	kb1.clauses	Potracting D romovos it and
[(Q	~P), (R P)]	the KB no longer entails Q
>>>	kb1.ask(expr('Q'))	
False		

Reminder: Inference rules for FOL

- Inference rules for propositional logic apply to FOL as well
 - Modus Ponens, And-Introduction, And-Elimination, ...
- New (sound) inference rules for use with quantifiers:
 - Universal elimination
 - Existential introduction
 - Existential elimination
 - Generalized Modus Ponens (GMP)