Propositional and First-Order Logic Chapter 7.4─7.8, 8.1─8.3, 8.5

Some material adopted from notes by Andreas Geyer-Schulz and Chuck Dyer

Logic roadmap overview

- Propositional logic
	- $-$ Problems with propositional logic
- First-order logic
	- $-$ Properties, relations, functions, quantifiers, ...
	- $-$ Terms, sentences, wffs, axioms, theories, proofs, ...
	- Extensions to first-order logic
- Logical agents
	- Reflex agents
	- $-$ Representing change: situation calculus, frame problem
	- $-$ Preferences on actions
	- Goal-based agents

Disclaimer

"Logic, like whiskey, loses its beneficial effect when taken in too large quantities."

- Lord Dunsany

Propositional Logic: Review

Big Ideas

- Logic is a great knowledge representation language for many AI problems
- **Propositional logic** is the simple foundation and fine for many AI problems
- **First order logic** (FOL) is much more expressive as a KR language and more commonly used in AI
- **Many variations** on classical logics are used: horn logic, higher order logic, three-valued logic, probabilistic logics, etc.

Propositional logic syntax

- **Logical constants**: true, false
- Propositional symbols: P, Q, ... (aka atomic **sentences**)
- Parentheses: (\ldots)
- **Sentences** are build with **connectives**:
	-
	-
	-
	-
	-

∧ and [conjuncGon] ∨ or [disjuncGon] \Rightarrow implies [implication/conditional/if]

- ⇔ is equivalent [biconditional/iff]
- \lnot not [negation]
- Literal: atomic sentence or their negation: P , $\neg P$

Propositional logic syntax

- Simplest logic language in which a user specifies
	- $-$ Set of propositional symbols (e.g., P, Q)
	- –What each *means*, (e.g., P: "*It's hot"*, Q: "*It's humid*"
- A sentence (well formed formula) is defined as:
	- $-$ Any symbol is a sentence
	- $-If S$ is a sentence, then $\neg S$ is a sentence
	- –If S is a sentence, then (S) is a sentence
	- –If S and T are sentences, then so are **(S** ∨ **T), (S** ∧ **T), (S** \rightarrow T), and (S \leftrightarrow T)
	- –A sentence results from a finite number of applications of the rules

Examples of PL sentences

 \bullet (P \wedge Q) \rightarrow R

"If it is hot and humid, then it is raining"

 \bullet Q \rightarrow P

"If it is humid, then it is hot"

•Q

"It is humid."

• We're free to choose better symbols, e.g.: $Hot = "It is hot"$ Humid $=$ "It is humid" Raining $=$ "It is raining"

Some terms

- The meaning or **semantics** of a sentence determines its **interpretation**
- Given the truth values of all symbols in a sentence, it can be *evaluated* to determine its **truth value** (True or False)
- A **model** for a KB is a *possible* world an assignment of truth values to propositional symbols that makes each sentence in KB true

Model for a KB

- Let the KB be $[PAQ \rightarrow R, Q \rightarrow P]$
- What are the possible models? Consider all possible assignments of $T|F$ to P, Q and R and check truth tables *PQR*
	- **FFF: OK**
	- **FFT: OK**
	- $-$ FTF: NO
	- $-$ FTT: NO
	- **TFF: OK**
	- **TFT: OK**
	- $-$ TTF: NO
	- **TTT: OK**

P: it's hot Q: it's humid R: it's raining

Model for a KB

- Let the KB be $[PAQ \rightarrow R, Q \rightarrow P, Q]$
- What are the possible models? Consider all possible assignments of $T|F$ to P, Q and R and check truth tables *PQR*
	- $-$ FFF: NO
	- $-$ FFT: NO
	- $-$ FTF: NO
	- $-$ FTT: NO
	- $-$ TFF: NO
	- $-$ TFT: NO
	- $-$ TTF: NO
	- **TTT: OK**

P: it's hot Q: it's humid R: it's raining

- Since R is true in every model of the KB
- The KB entails that R is True

More terms

- A valid sentence or tautology is a sentence that's True under all interpretations, no matter what the world is actually like or what the semantics is. Example: "It's raining or it's not raining"
- An **inconsistent sentence** or **contradiction** is a sentence that's **False** under all interpretations. The world is never like what it describes, as in "It's raining and it's not raining."
- **P entails Q**, written $P \mid Q$, means that whenever P is True, so is Q
	- $-$ In all models in which P is true, Q is also true

Truth tables

- Truth tables are used to define logical connectives
- And to determine when a complex sentence is true given the values of the symbols in it

Example of a truth table used for a complex sentence

On the implies connective: $P \rightarrow Q$

- → is a *logical* connective
- So $P \rightarrow Q$ is a logical sentence and has a truth value, i.e., is either true or false
- If we add this sentence to a KB, it can be used by an inference rule, *Modes Ponens*, to derive/infer/prove Q if P is also in the KB
- Given a KB where P=True and Q=True, we can also derive/infer/prove that $P\rightarrow Q$ is True

$P \rightarrow Q$

- When is $P \rightarrow Q$ true? Check all that apply
	- \Box P=Q=true
	- \Box P=Q=false
	- \Box P=true, Q=false
	- \Box P=false, Q=true

$P \rightarrow Q$

- When is $P\rightarrow Q$ true? Check all that apply
	- \blacksquare P=Q=true
	- Ψ P=Q=false
	- \Box P=true, Q=false
	- **Ø** P=false, Q=true
- We can get this from the truth table for \rightarrow
- Note: in FOL it's much harder to prove that a conditional true
	- $-$ Consider proving prime(x) \rightarrow odd(x)

Inference rules

- **Logical inference** creates new sentences that logically follow from a set of sentences (KB)
- An inference rule is **sound** if every sentence X it produces when operating on a KB logically follows from the KB

 $-i.e.,$ inference rule creates no contradictions

- An inference rule is **complete** if it can produce every expression that logically follows from (is entailed by) the KB.
	- Note analogy to complete search algorithms

Sound rules of inference

- Here are examples of sound rules of inference
- Each can be shown to be sound using a truth table

Soundness of modus ponens

Resolution

- **Resolution** is a valid inference rule producing a new clause implied by two clauses containing *complementary literals*
	- Literal: atomic symbol or its negation, i.e., P , $\sim P$
- Amazingly, this is the only interference rule needed to build a sound & complete theorem prover
	- Based on proof by contradiction and usually called resolution refutation
- The resolution rule was discovered by Alan Robinson (CS, U. of Syracuse) in the mid 1960s

Resolution

- A KB is a set of sentences all of which are true, i.e., a conjunction of sentences
- To use resolution, put KB into *conjunctive normal form* (CNF) where each is a disjunction of (one or more) literals (positive or negative atoms)
- Every KB can be put into CNF, it's just a matter of rewriting its sentences using standard tautologies, e.g.:

 $-P\rightarrow Q \equiv \sim P\vee Q$

Resolution Example

Tautologies $(A \rightarrow B) \leftrightarrow (\sim A \vee B)$ $(A \vee (B \wedge C)) \leftrightarrow (A \vee B) \wedge (A \vee C)$

- KB: $[P\rightarrow Q, Q\rightarrow R\wedge S]$
- KB: $[P\rightarrow Q, Q\rightarrow R, Q\rightarrow S]$
- KB in CNF: [~P∨Q, ~Q∨R, ~Q∨S]
- Resolve KB[0] and KB[1] producing: ~P∨R *(i.e., P*→*R)*
- Resolve KB[0] and KB[2] producing: ~P∨S *(i.e., P*→*S)*
- New KB: [~PvQ, ~QvR, ~QvS, ~PvR, ~PvS]

Soundness of resolution inference rule

From the rightmost three columns of this truth table, we can see that

 $(\alpha \vee \beta) \wedge (\sim \beta \vee \gamma) \leftrightarrow (\alpha \vee \gamma)$ is valid (i.e., always true regardless of the truth values assigned to α , β and γ

Soundness of resolution inference rule

From rightmost three columns of truth table, we see that (**α** ∨ **β**) ∧ (**~β** ∨ **γ**) → (**α** ∨ **γ**) is valid (i.e., always true regardless of truth values for α , β

and γ

Proving it's raining (1)

- A **proof** is a sequence of sentences, where each is a premise (i.e., a given) or is derived from earlier sentences in the proof by an inference rule
- Last sentence is the **theorem** (also called goal or query) that we want to prove
- The *weather problem* using traditional reasoning

Proving it's raining (2)

A simple proof procedure

This procedure will generate new sentences from a KB

- 1. Convert all sentences in the KB to CNF
- 2. Find all pairs of sentences in KB with complementary literals that have not yet been resolved
- 3. If there are no pairs stop else resolve each pair, adding the result to the KB and go to 2
- \bullet Is it sound?
- Is it complete?
- Will it always terminate?

Horn* sentences

• A **Horn sentence** or **Horn clause** has the form:

P1 ∧ P2 ∧ P3 ... ∧ Pn \rightarrow Qm where *n*>=0, m in{0,1}

- Note: a conjunction of 0 or more symbols to left of \rightarrow and 0-1 symbols to right
- Special cases:
	- $-$ n=0, m=1: **P** (assert P is true)
	- $-$ n>0, m=0: $P \wedge Q \rightarrow$ (constraint: both P and Q can't be true)
	- $-$ n=0, m=0: (well, there is nothing there!)
- Put in CNF: each sentence is a disjunction of literals with at most one non-negative literal

¬P1 ∨ ¬P2 ∨ ¬P3 ... ∨ ¬Pn ∨ Q

* After Alfred Horn **a** *(P → Q) = (¬P ∨ Q)*

Significance of Horn logic

- We can also have horn sentences in FOL
- Reasoning with horn clauses is much simpler
	- Satisfiability of propositional KB (i.e., finding values for a symbols that will make it true) is NP complete
	- $-$ Restricting KB to horn sentences, satisfiability is in P
- For this reason, FOL Horn sentences are the basis for many rule-based languages, including Prolog and Datalog
- Horn logic can't handle, in a general way, **negation** and disjunctions

Entailment and derivation

•**Entailment: KB |= Q**

- $-Q$ is entailed by KB (set sentences) iff there is no logically possible world where Q is false while all the sentences in KB are true
- $-$ Or, stated positively, Q is entailed by KB iff the conclusion is true in every logically possible world in which all the premises in KB are true

• Derivation: KB |- Q

– We can derive Q from KB if there's a proof consisting of a sequence of valid inference steps starting from the premises in KB and resulting in Q

Two important properties for inference

Soundness: If KB | - Q then KB | = Q

- $-If Q$ is derived from KB using a given set of rules of inference, then Q is entailed by KB
- $-$ Hence, inference produces only real entailments, or any sentence that follows deductively from the premises is valid

Completeness: If KB | = Q then KB |- Q

- $-If Q$ is entailed by KB, then Q can be derived from KB using the rules of inference
- Hence, inference produces all entailments, or all valid sentences can be proved from the premises

Problems with **Propositional Logic**

Propositional logic: pro and con

- •**Advantages**
	- –Simple KR language good for many problems
	- -Lays foundation for higher logics (e.g., FOL)
	- Reasoning is decidable, though NP complete; efficient techniques exist for many problems

•**Disadvantages**

- –Not expressive enough for most problems
- -Even when it is, it can very "un-concise"

PL is a weak KR language

- Hard to identify *individuals* (e.g., Mary, 3)
- Can't directly represent properties of individuals or relations between them (e.g., "Bill is tall")
- Generalizations, patterns, regularities hard to represent (e.g., "all triangles have 3 sides")
- First-Order Logic (FOL) can represent this information via relations, variables and **quantifiers**, e.g.,
	- *Every elephant is gray:* ∀ x (elephant(x) \rightarrow gray(x))
	- *There is a white alligator:* ∃ x (alligator(X) ^ white(X))

PL Example

- Consider the problem of representing the following information:
	- $-$ Every person is mortal.
	- Confucius is a person.
	- Confucius is mortal.
- How can these sentences be represented so that we can infer the third sentence from the first two?

PL Example

• In PL we have to create propositional symbols to stand for all or part of each sentence, e.g.:

 $P = "person"; Q = "mortal"; R = "Confucius"$

• The above 3 sentences are represented as:

 $P \rightarrow Q$; $R \rightarrow P$; $R \rightarrow Q$

- The 3rd sentence is entailed by the first two, but we need an explicit symbol, R, to represent an individual, Confucius, who is a member of the classes *person* and *mortal*
- Representing other individuals requires introducing separate symbols for each, with some way to represent the fact that all individuals who are "people" are also "mortal"

Hunt the Wumpus domain

• Some atomic propositions: $S12$ = There is a stench in cell $(1,2)$ $B34$ = There is a breeze in cell $(3,4)$ $W22 = Wumpus$ is in cell $(2,2)$ $V11 = We've visited cell (1,1)$ $OK11 = Cell (1,1)$ is safe

• Some rules:

…

¬S22 → ¬W12 ∧ ¬W23 ∧ ¬W32 ∧ ¬W21 $S22 \rightarrow W12 \vee W23 \vee W32 \vee W21$ $B22 \rightarrow P12 \vee P23 \vee P32 \vee P21$ $W22 \rightarrow$ S12 \land S23 \land S23 \land W21 W 22 \rightarrow \neg W11 \land \neg W21 \land \ldots \neg W44 $A22 \rightarrow V22$ $A22 \rightarrow W11 \land W21 \land ... \neg W44$ $V22 \rightarrow OK22$

Hunt the Wumpus domain

- Eight variables for each cell: e.g., A11, B11, G11, OK11, P11, S11, V11, W11
- The lack of variables requires us to give similar rules for each cell!

• Ten rules (I think) for each

Gold

US

After third move

- We can prove that the Wumpus is in $(1,3)$ using these four rules
- $\frac{1}{2}$ S OK OК 1.1 2.1 3.1 \bf{B} P V V OК OК • See R&N section 7.5

 $= Aqent$ A $4,4$ 2.4 3.4 В $= Breeze$ $=$ Glitter, Gold $OK = Safe square$ $\frac{1}{3}$ W! $\overline{2.3}$ $= Pit$ 3.3 4.3 P $=$ Stench $= Visited$ W = Wumpus $\overline{22}$ $\overline{3.2}$ 42 4.1

 $(R1)$ ¬S11 → ¬W11 ∧ ¬ W12 ∧ ¬ W21

(R2) ¬ S21 → ¬W11 ∧ ¬ W21 ∧ ¬ W22 ∧ ¬ W31

 1.4

(R3) ¬ S12 → ¬W11 ∧ ¬ W12 ∧ ¬ W22 ∧ ¬ W13

(R4) S12 → W13 v W12 v W22 v W11

Proving W13

 $(R1)$ ¬S11 → ¬W11 ∧ ¬ W12 ∧ ¬ W21 *(R2)* ¬ S21 → ¬W11 ∧ ¬ W21 ∧ ¬ W22 ∧ ¬ W31 *(R3)* ¬ S12 → ¬W11 ∧ ¬ W12 ∧ ¬ W22 ∧ ¬ W13 *(R4)* S12 → W13 v W12 v W22 v W11

Apply MP with \neg S11 and R1:

¬ W11 ∧ ¬ W12 ∧ ¬ W21

Apply And-Elimination to this, yielding 3 sentences:

 \neg W11, \neg W12, \neg W21

Apply MP to \sim S21 and R2, then apply And-elimination:

 $-$ W22, $-$ W21, $-$ W31

Apply MP to S12 and R4 to obtain:

W13 ∨ W12 ∨ W22 ∨ W11

Apply Unit Resolution on (W13 \vee W12 \vee W22 \vee W11) and \neg W11:

W13 ∨ W12 ∨ W22

Apply Unit Resolution with (W13 \vee W12 \vee W22) and \neg W22:

W13 ∨ W12

Apply Unit Resolution with (W13 \vee W12) and \neg W12:

W13

QED

Propositional Wumpus hunter problems

- Lack of variables prevents stating more general rules
	- \forall x, y $V(x,y) \rightarrow OK(x,y)$
	- \forall x, y S(x,y) \rightarrow W(x-1,y) \vee W(x+1,y) ...
- Change of the KB over time is difficult to represent
	- $-$ In classical logic, a fact is true or false for all time
	- $-A$ standard technique is to index dynamic facts with the time when they're true
		- $A(1, 1, t0)$
		- $-$ Thus we have a separate KB for every time point

Propositional logic summary

- Inference: process of deriving new sentences from old
	- $-$ **Sound** inference derives true conclusions given true premises
	- $-$ **Complete** inference derives all true conclusions from a set of premises
- Valid sentence: true in all worlds under all interpretations
- If an implication sentence can be shown to be valid, then, given its premise, its consequent can be derived
- Different logics make different **commitments** about what the world is made of and the kind of beliefs we can have
- **Propositional logic** commits only to the existence of facts that may or may not be the case in the world being represented
	- $-$ Simple syntax and semantics suffices to illustrate the process of inference
	- Propositional logic can become impractical, even for very small worlds