
Proposi'onal	and	
First-Order	Logic	

Chapter	7.4─7.8,	8.1─8.3,	8.5	

Some	material	adopted	from	notes	by	Andreas	Geyer-Schulz	and	Chuck	Dyer	



Logic	roadmap	overview	

• ProposiGonal	logic	
– Problems	with	proposiGonal	logic	

• First-order	logic	
– ProperGes,	relaGons,	funcGons,	quanGfiers,	…	
– Terms,	sentences,	wffs,	axioms,	theories,	proofs,	…	
– Extensions	to	first-order	logic	

• Logical	agents	
– Reflex	agents	
– RepresenGng	change:	situaGon	calculus,	frame	problem	
– Preferences	on	acGons	
– Goal-based	agents	



Disclaimer	

“Logic,	like	whiskey,	loses	its	
beneficial	effect	when	taken	in	
too	large	quanGGes.”	

	

-	Lord	Dunsany	



Proposi'onal	
Logic:	Review	



Big	Ideas	

• Logic	is	a	great	knowledge	representaGon	
language	for	many	AI	problems	

• Proposi'onal	logic	is	the	simple	foundaGon	
and	fine	for	many	AI	problems	

• First	order	logic	(FOL)	is	much	more	
expressive	as	a	KR	language	and	more	
commonly	used	in	AI	

• Many	varia'ons	on	classical	logics	are	used:	
horn	logic,	higher	order	logic,	three-valued	
logic,	probabilisGc	logics,	etc.	



Proposi'onal	logic	syntax	
• Logical	constants:	true,	false		
• Proposi'onal	symbols:	P,	Q,	...	(aka	atomic	
sentences)	

• Parentheses:	(	…	)	
• Sentences	are	build	with	connec'ves:		
	∧ and	 	 	 	[conjuncGon]	
	∨ 	or	 	 	 	[disjuncGon]	
	⇒ 	implies	 	 	[implicaGon/condiGonal/if]	
	⇔	is	equivalent 	[bicondiGonal/iff]	
	¬ 	not	 	 	 	[negaGon]	

• Literal:	atomic	sentence	or	their	negaGon:		P,	¬P	



Proposi'onal	logic	syntax	
• Simplest	logic	language	in	which	a	user	specifies	
– Set	of	proposiGonal	symbols	(e.g.,	P,	Q)	
– What	each	means,	(e.g.,	P:	“It’s		hot”,	Q:	“It’s	humid”	

• A	sentence	(well	formed	formula)	is	defined	as:		
– Any	symbol	is	a	sentence	
– If	S	is	a	sentence,	then	¬S	is	a	sentence	
– If	S	is	a	sentence,	then	(S)	is	a	sentence	
– If	S	and	T	are	sentences,	then	so	are	(S	∨	T),	(S	∧	T),	(S	
→	T),	and	(S	↔	T)	

– A	sentence	results	from	a	finite	number	of	
applicaGons	of	the	rules	



Examples	of	PL	sentences	
• (P	∧	Q)	→	R		
“If	it	is	hot	and	humid,	then	it	is	raining”	

• Q	→	P		
“If	it	is	humid,	then	it	is	hot”	

• Q		
“It	is	humid.”	

• We’re	free	to	choose	beeer	symbols,	e.g.:	
Hot	=	“It	is	hot”	
Humid	=	“It	is	humid”	
Raining	=	“It	is	raining”	



Some	terms	

• The	meaning	or	seman'cs	of	a	sentence	
determines	its	interpreta'on	

• Given	the	truth	values	of	all	symbols	in	a	
sentence,	it	can	be	evaluated	to	determine	its	
truth	value	(True	or	False)		

• A	model	for	a	KB	is	a	possible	world	–	an	
assignment	of	truth	values	to	proposiGonal	
symbols	that	makes	each	sentence	in	KB	true	



Model	for	a	KB	
• Let	the	KB	be	[P∧Q→R,	Q	→	P]	
• What	are	the	possible	models?		Consider	all	possible	
assignments	of	T|F	to	P,	Q	and	R	and	check	truth	tables	
				PQR	
– FFF:	OK	
– FFT:	OK	
– FTF:	NO	
– FTT:	NO	
– TFF:	OK	
– TFT:	OK	
– TTF:	NO	
– TTT:	OK	

	

	

P:	it's	hot	
Q:	it's	humid		
R:	it's	raining	



Model	for	a	KB	
• Let	the	KB	be	[P∧Q→R,	Q	→	P,	Q]	
• What	are	the	possible	models?		Consider	all	possible	
assignments	of	T|F	to	P,	Q	and	R	and	check	truth	tables	
				PQR	
– FFF:	NO	
– FFT:	NO	
– FTF:	NO	
– FTT:	NO	
– TFF:	NO	
– TFT:	NO	
– TTF:	NO	
– TTT:	OK	

	

P:	it's	hot	
Q:	it's	humid		
R:	it's	raining	

• Since	R	is	true	in	
every	model	of	the	
KB	
• The	KB	entails	that	
R	is	True	



More	terms	
• A	valid	sentence	or	tautology	is	a	sentence	that’s	
True	under	all	interpretaGons,	no	maeer	what	the	
world	is	actually	like	or	what	the	semanGcs	is.	
Example:	“It's	raining	or	it's	not	raining”	

• An	inconsistent	sentence	or	contradic'on	is	a	
sentence	that’s	False	under	all	interpretaGons.	
The	world	is	never	like	what	it	describes,	as	in	“It's	
raining	and	it's	not	raining.”	

• P	entails	Q,	wrieen	P	|=	Q,	means	that	whenever	
P	is	True,	so	is	Q	
– In	all	models	in	which	P	is	true,	Q	is	also	true	



Truth	tables	

Truth	tables	for	the	five	logical	connecBves	

Example	of	a	truth	table	used	for	a	complex	sentence	

•  Truth	tables	are	used	to	define	logical	connecGves	
•  And	to	determine	when	a	complex	sentence	is	true	
given	the	values	of	the	symbols	in	it	



On	the	implies	connec've:	P	→	Q	

• →	is	a	logical	connecBve	
• So	P→	Q	is	a	logical	sentence	and	has	a	
truth	value,	i.e.,	is	either	true	or	false	

• If	we	add	this	sentence	to	a	KB,	it	can	be	
used	by	an	inference	rule,	Modes	Ponens,	to	
derive/infer/prove	Q	if	P	is	also	in	the	KB	

• Given	a	KB	where	P=True	and	Q=True,	we	
can	also	derive/infer/prove	that	P→Q	is	
True	



P	→	Q	

• When	is	P→Q	true?		Check	all	that	apply	
q 	P=Q=true	
q 	P=Q=false	
q 	P=true,	Q=false	
q 	P=false,	Q=true	



P	→	Q	

• When	is	P→Q	true?		Check	all	that	apply	
q 	P=Q=true	
q 	P=Q=false	
q 	P=true,	Q=false	
q 	P=false,	Q=true	

• We	can	get	this	from	the	truth	table	for	→	
• Note:	in	FOL	it's	much	harder	to	prove	that	
a	condiGonal	true	
– Consider	proving	prime(x)	→	odd(x)	

	
	

✔	

✔	

✔	



Inference	rules	
• Logical	inference	creates	new	sentences	that	
logically	follow	from	a	set	of	sentences	(KB)	

• An	inference	rule	is	sound	if	every	sentence	X	it	
produces	when	operaGng	on	a	KB	logically	
follows	from	the	KB	
– i.e.,	inference	rule	creates	no	contradicGons	

• An	inference	rule	is	complete	if	it	can	produce	
every	expression	that	logically	follows	from	(is	
entailed	by)	the	KB.	
– Note	analogy	to	complete	search	algorithms	



Sound	rules	of	inference	
• Here	are	examples	of	sound	rules	of	inference	
• Each	can	be	shown	to	be	sound	using	a	truth	table	

RULE	 	 	PREMISE 	 	CONCLUSION	
Modus	Ponens 	 	A,	A	→	B 	 	B	
And	IntroducGon 	A,	B 	 	 	A	∧	B	
And	EliminaGon	 	A	∧	B 	 	 	A	
Double	NegaGon 	¬¬A 	 	 	A	
Unit	ResoluGon 	 	A	∨	B,	¬B 	 	A	
Resolu'on 	 	A	∨	B,	¬B	∨	C 	A	∨	C	



Soundness	of	modus	ponens	

A	 B	 A	→	B	 OK?	

True	 True	 True	 √	
True	 False	 False	 √	
False	 True	 True	 √	
False	 False	 True	 √	



Resolu'on	
• Resolu'on	is	a	valid	inference	rule	producing	a	
new	clause	implied	by	two	clauses	containing	
complementary	literals	
–  Literal:	atomic	symbol	or	its	negaGon,	i.e.,	P,	~P	

• Amazingly,	this	is	the	only	interference	rule	needed	
to	build	a	sound	&	complete	theorem	prover	
– Based	on	proof	by	contradicGon	and	usually	called	
resoluGon	refutaGon	

• The	resoluGon	rule	was	discovered	by	Alan	
Robinson	(CS,	U.	of	Syracuse)	in	the	mid	1960s	



Resolu'on	

• A	KB	is	a	set	of	sentences	all	of	which	are	true,	
i.e.,	a	conjuncGon	of	sentences	

• To	use	resoluGon,	put	KB	into	conjuncBve	
normal	form	(CNF)	where	each	is	a	disjuncGon	
of	(one	or	more)	literals	(posiGve	or	negaGve	
atoms)	

• Every	KB	can	be	put	into	CNF,	it's	just	a	maeer	
of	rewriGng	its	sentences	using	standard	
tautologies,	e.g.:	
– P→Q	≡		~P∨Q	



Resolu'on	Example	

• KB:	[P→Q	,	Q→R∧S]	
• KB:	[P→Q	,	Q→R,	Q→S	]	
• KB	in	CNF:	[~P∨Q	,	~Q∨R	,	~Q∨S]	
• Resolve	KB[0]	and	KB[1]		producing:		

~P∨R			(i.e.,	P→R)	
• Resolve	KB[0]	and	KB[2]		producing:		

~P∨S			(i.e.,	P→S)	
• New	KB:	[~P∨Q	,	~Q∨R,	~Q∨S,	~P∨R,	~P∨S]	

Tautologies	
	(A→B)	↔	(~A∨B)	

(A∨(B∧C))		↔	(A∨B)∧(A∨C)		



Soundness	of		resolu'on	inference	rule		

From	the	rightmost	three	columns	of	this	truth	table,	we	
can	see	that	

(α	∨	β)	∧	(~β	∨	γ)	↔	(α	∨	γ)	
is	valid	(i.e.,	always	true	regardless	of	the	truth	values	
assigned	to	α,	β	and	γ	



Soundness	of	resolu'on	inference	rule		

From	rightmost	three	columns	of	truth	table,	we	see	that	
(α	∨	β)	∧	(~β	∨	γ)	→	(α	∨	γ)	

is	valid	(i.e.,	always	true	regardless	of	truth	values	for	α,	β	
and	γ	



Proving	it’s	raining	(1)	
• A	proof	is	a	sequence	of	sentences,	where	each	is	a	
premise	(i.e.,	a	given)	or	is	derived	from	earlier	
sentences	in	the	proof	by	an	inference	rule	

• Last	sentence	is	the	theorem	(also	called	goal	or	query)	
that	we	want	to	prove	

• The	weather	problem	using	tradiGonal	reasoning	
1	Hu 	premise 	 	“It's	humid”	
2	Hu→Ho	 	premise 	 	“If	it's	humid,	it's	hot”	
3	Ho	 	modus	ponens(1,2) 	“It's	hot”	
4	(Ho∧Hu)→R 	premise 	 	“If	it's	hot	&	humid,	it's	raining”	
5	Ho∧Hu	 	and	introducGon(1,3)	“It's	hot	and	humid”	
6	R	 	modus	ponens(4,5) 	“It's	raining”	



Proving	it’s	raining	(2)	

Hu	 ~Hu∨Ho	 ~Hu∨~Ho∨R	

Hu =>  Ho Hu ∧ Ho => R 
~(Hu ∧ Ho) ∨ R 
~Hu ∨ ~Ho ∨ R 

Hu 

Ho	

~Hu∨R	

R	

Hu =>  R 



A	simple	proof	procedure	

This	procedure	will	generate	new	sentences	from	a	KB	
1.  Convert	all	sentences	in	the	KB	to	CNF	
2.  Find	all	pairs	of	sentences	in	KB	with	complementary	

literals	that	have	not	yet	been	resolved	
3.  If	there	are	no	pairs	stop	else	resolve	each	pair,	adding	

the	result	to	the	KB	and	go	to	2	

• Is	it	sound?	
• Is	it	complete?	
• Will	it	always	terminate?	

	



Horn*	sentences	
• A	Horn	sentence	or	Horn	clause	has	the	form:	
P1	∧	P2	∧	P3	...	∧	Pn		→		Qm		where	n>=0,	m	in{0,1}	

• Note:	a	conjuncGon	of	0	or	more	symbols	to	le{	of	
→	and	0-1	symbols	to	right	

• Special	cases:	
– n=0,	m=1:	P	(assert	P	is	true)	
– n>0,	m=0:	P∧Q	→		(constraint:	both	P	and	Q	can’t	be	true)	
– n=0,	m=0:	(well,	there	is	nothing	there!)	

• Put	in	CNF:	each	sentence	is	a	disjuncGon	of	literals	
with	at	most	one	non-negaGve	literal	
¬P1	∨	¬P2	∨	¬P3	...	∨	¬Pn	∨	Q	

(P	→	Q)		=	(¬P	∨	Q)	
*	A{er	Alfred	Horn	



Significance	of	Horn	logic	

• We	can	also	have	horn	sentences	in	FOL	
• Reasoning	with	horn	clauses	is	much	simpler	
– SaGsfiability	of	proposiGonal	KB	(i.e.,	finding	values	
for	a	symbols	that	will	make	it	true)	is	NP	complete	

– RestricGng	KB	to	horn	sentences,	saGsfiability	is	in	P	
• For	this	reason,	FOL	Horn	sentences	are	the	
basis	for	many	rule-based	languages,	
including	Prolog	and	Datalog	

• Horn	logic	can’t	handle,	in	a	general	way,	
nega'on	and	disjunc'ons	



Entailment	and	deriva'on	

• Entailment:	KB	|=	Q	
– Q	is	entailed	by	KB	(set	sentences)	iff	there	is	no	
logically	possible	world	where	Q	is	false	while	all	
the	sentences	in	KB	are	true	

– Or,	stated	posiGvely,	Q	is	entailed	by	KB	iff	the	
conclusion	is	true	in	every	logically	possible	world	
in	which	all	the	premises	in	KB		are	true	

• Deriva'on:	KB	|-	Q	
– We	can	derive	Q	from	KB	if	there's	a	proof	
consisGng	of	a	sequence	of	valid	inference	steps	
starGng	from	the	premises	in	KB	and	resulGng	in	Q	



Two	important	proper'es	for	inference	

Soundness:	If	KB	|-	Q	then	KB	|=	Q	
– If	Q	is	derived	from	KB	using	a	given	set	of	rules	
of	inference,	then	Q	is	entailed	by	KB	

– Hence,	inference	produces	only	real	
entailments,	or	any	sentence	that	follows	
deducGvely	from	the	premises	is	valid	

Completeness:	If	KB	|=	Q	then	KB	|-	Q	
– If	Q	is	entailed	by	KB,	then	Q	can	be	derived	
from	KB	using	the	rules	of	inference	

– Hence,	inference	produces	all	entailments,	or	all	
valid	sentences	can	be	proved	from	the	
premises		



Problems	with	
Proposi'onal	

Logic	



Proposi'onal	logic:	pro	and	con	

• Advantages	
– Simple	KR	language	good	for	many	problems	
– Lays	foundaGon	for	higher	logics	(e.g.,	FOL)	
– Reasoning	is	decidable,	though	NP	complete;	
efficient	techniques	exist	for	many	problems	

• Disadvantages	
– Not	expressive	enough	for	most	problems	
– Even	when	it	is,	it	can	very	“un-concise”	



PL	is	a	weak	KR	language	

• Hard	to	idenGfy	individuals	(e.g.,	Mary,	3)	
• Can’t	directly	represent	properGes	of	individuals	
or	relaGons	between	them	(e.g.,	“Bill	is	tall”)	

• GeneralizaGons,	paeerns,	regulariGes	hard	to	
represent	(e.g.,	“all	triangles	have	3	sides”)	

• First-Order	Logic	(FOL)	can	represent	this	
informaGon	via	rela'ons,	variables	and	
quan'fiers,	e.g.,	
• Every	elephant	is	gray:	∀	x	(elephant(x)	→	gray(x))	
• There	is	a	white	alligator:	∃	x	(alligator(X)	^	white(X))	



PL	Example	

• Consider	the	problem	of	represenGng	the	
following	informaGon:		
–  Every	person	is	mortal.		
–  Confucius	is	a	person.		
–  Confucius	is	mortal.		

• How	can	these	sentences	be	represented	so	that	
we	can	infer	the	third	sentence	from	the	first	two?		



PL	Example	
• In	PL	we	have	to	create	proposiGonal	symbols	to	stand	for	
all	or	part	of	each	sentence,	e.g.:	
P	=	“person”;	Q	=	“mortal”;	R	=	“Confucius”	

• The	above	3	sentences	are	represented	as:		
P	→	Q;	R	→	P;		R	→	Q		

• The	3rd	sentence	is	entailed	by	the	first	two,	but	we	need	
an	explicit	symbol,	R,	to	represent	an	individual,	Confucius,	
who	is	a	member	of	the	classes	person	and	mortal	

• RepresenGng	other	individuals	requires	introducing	
separate	symbols	for	each,	with	some	way	to	represent	the	
fact	that	all	individuals	who	are	“people”	are	also	“mortal”	



Hunt	the	Wumpus	domain	
• Some	atomic	proposiGons:	

S12	=	There	is	a	stench	in	cell	(1,2)	
B34	=	There	is	a	breeze	in	cell	(3,4)	
W22	=	Wumpus	is	in	cell	(2,2)	
V11	=	We’ve	visited	cell	(1,1)	
OK11	=	Cell	(1,1)	is	safe	
…	

• Some	rules:	
¬S22	→	¬W12	∧	¬W23	∧	¬W32	∧	¬W21	
S22	→	W12	∨	W23	∨	W32	∨	W21	
B22	→	P12	∨	P23	∨	P32	∨	P21	
W22	→	S12	∧	S23	∧	S23	∧	W21	
W22	→	¬W11	∧	¬W21	∧	…	¬W44	
A22	→	V22	
A22	→¬W11	∧	¬W21	∧	…	¬W44	
V22	→	OK22	
	



Hunt	the	Wumpus	domain	
• Eight	variables	for	each	cell:	
e.g.,	A11,	B11,	G11,	OK11,	
P11,	S11,	V11,	W11	

• The	lack	of	variables	
requires	us	to	give	similar	
rules	for	each	cell!	

• Ten	rules	(I	think)	for	each	
A11	→	…	
V11	→	…	
P11	→	…	
¬P11	→	…	
	

W11	→	…	
¬W11	→	…	
S11	→	…	
¬S11	→	…	
B11	→	…	
¬B11	→	…	
	



Acer		third	move	

• We	can	prove	that	the	
Wumpus	is	in	(1,3)	using	
these	four	rules	

• See	R&N	secGon	7.5	
(R1)	¬S11	→	¬W11	∧	¬	W12	∧	¬	W21	

(R2)	¬	S21	→	¬W11	∧	¬	W21	∧	¬	W22	∧	¬	W31	

(R3)	¬	S12	→	¬W11	∧	¬	W12	∧	¬	W22	∧	¬	W13	

(R4)				S12	→	W13	∨	W12	∨	W22	∨	W11	



Proving	W13	
Apply	MP	with	¬S11		and		R1:		

¬	W11	∧	¬	W12	∧	¬	W21		
Apply	And-EliminaGon	to	this,	yielding	3	sentences:		

¬	W11,	¬	W12,	¬	W21		
Apply	MP	to	~S21	and		R2,	then	apply	And-eliminaGon:		

¬	W22,	¬	W21,	¬	W31		
Apply	MP	to	S12	and		R4	to	obtain:		

W13	∨	W12	∨	W22	∨	W11	
Apply	Unit	ResoluGon	on		(W13	∨	W12	∨	W22	∨	W11)	and	¬W11:		

W13	∨	W12	∨	W22	
Apply	Unit	ResoluGon	with	(W13	∨	W12	∨	W22)	and	¬W22:	

W13	∨	W12	
Apply	Unit	ResoluGon		with	(W13	∨	W12)	and	¬W12:	

W13	
QED	

(R1)	¬S11	→	¬W11	∧	¬	W12	∧	¬	W21	

(R2)	¬	S21	→	¬W11	∧	¬	W21	∧	¬	W22	∧	¬	W31	

(R3)	¬	S12	→	¬W11	∧	¬	W12	∧	¬	W22	∧	¬	W13	

(R4)				S12	→	W13	∨	W12	∨	W22	∨	W11	



Proposi'onal	Wumpus	hunter	problems	

• Lack	of	variables	prevents	staGng	more	general	
rules	
• ∀	x,	y	V(x,y)	→	OK(x,y)	
• ∀	x,	y	S(x,y)	→	W(x-1,y)	∨	W(x+1,y)	…	

• Change	of	the	KB	over	Gme	is	difficult	to	represent	
– In	classical	logic,	a	fact	is	true	or	false	for	all	Gme	
– A	standard	technique	is	to	index	dynamic	facts	
with	the	Gme	when	they’re	true	
• A(1,	1,	t0)	

– Thus	we	have	a	separate	KB	for	every	Gme	point	



Proposi'onal	logic	summary	
• Inference:	process	of	deriving	new	sentences	from	old	

–  Sound	inference	derives	true	conclusions	given	true	premises	
–  Complete	inference	derives	all	true	conclusions	from	a	set	of	premises	

• Valid	sentence:	true	in	all	worlds	under	all	interpretaGons	
• If	an	implicaGon	sentence	can	be	shown	to	be	valid,	then,	
given	its	premise,	its	consequent	can	be	derived	

• Different	logics	make	different	commitments	about	what	the	
world	is	made	of	and	the	kind	of	beliefs	we	can	have	

• Proposi'onal	logic	commits	only	to	the	existence	of	facts	
that	may	or	may	not	be	the	case	in	the	world	being	
represented	
–  Simple	syntax	and	semanGcs	suffices	to	illustrate	the	process	of	inference	
–  ProposiGonal	logic	can	become	impracGcal,	even	for	very	small	worlds	


