

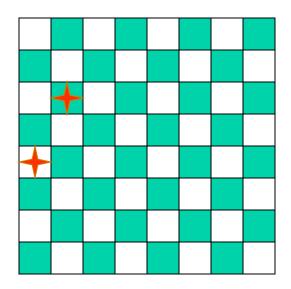
Russell & Norvig Ch. 6

#### **Overview**

- Constraint satisfaction is a powerful problemsolving paradigm
  - Problem: set of variables to which we must assign values satisfying problem-specific constraints
  - Constraint programming, constraint satisfaction problems (CSPs), constraint logic programming...
- Algorithms for CSPs
  - Backtracking (systematic search)
  - Constraint propagation (k-consistency)
  - Variable and value ordering heuristics
  - -Backjumping and dependency-directed backtracking

# Motivating example: 8 Queens

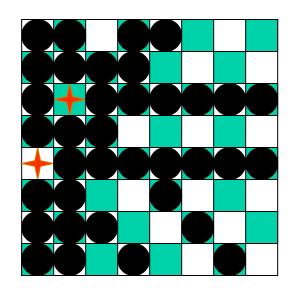
Place 8 queens on a chess board such That none is attacking another.



Generate-and-test, with no redundancies → "only" 88 combinations

8\*\*8 is 16,777,216

# Motivating example: 8-Queens



After placing these two queens, it's trivial to make the squares we can no longer use

## What more do we need for 8 queens?

- Not just a successor function and goal test
- But also
  - a means to propagate constraints
     imposed by one queen on the others
  - an early failure test
- → Explicit representation of constraints and constraint manipulation algorithms

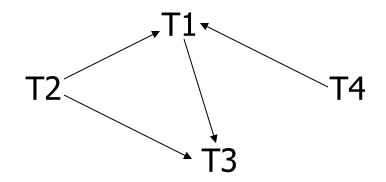
#### Informal definition of CSP

- CSP (Constraint Satisfaction Problem), given
  - (1) finite set of variables
  - (2) each with domain of possible values (often finite)
  - (3) set of constraints limiting values variables can assume
- Solution: an assignment of a value to each variable such that all constraints are satisfied
- Tasks: decide if a solution exists, find a solution, find all solutions, find "best solution" according to some metric (objective function)

# **Example: 8-Queens Problem**

- Eight variables Xi, i = 1..8 where Xi is the row number of queen in column i
- Domain for each variable {1,2,...,8}
- Constraints are of the forms:
  - -No queens on same row Xi = k →  $Xj \neq k$  for j = 1...8,  $j\neq i$
  - -No queens on same diagonal Xi = ki, Xj = kj → |i-j| ≠ | ki - kj | for j = 1..8, j≠i

# **Example: Task Scheduling**

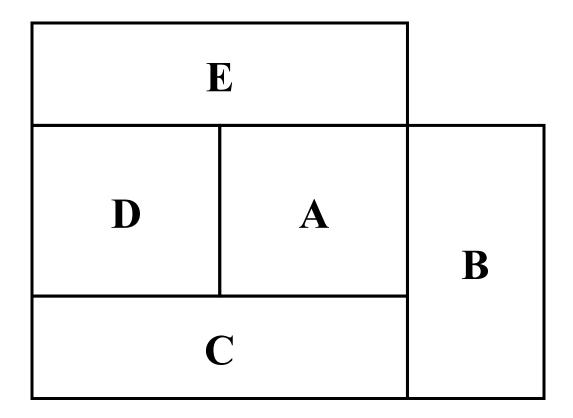


Examples of scheduling constraints:

- T1 must be done during T3
- T2 must be achieved before T1 starts
- T2 must overlap with T3
- T4 must start after T1 is complete

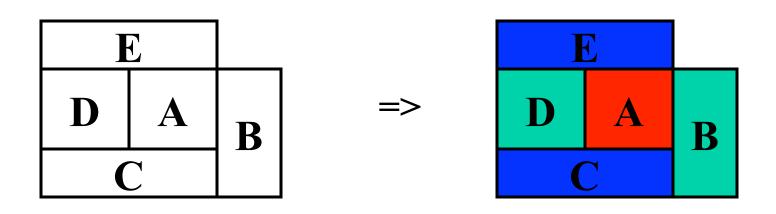
## Example: Map coloring

Color this map using three colors (red, green, blue) such that no two adjacent regions have the same color



# Map coloring

- Variables: A, B, C, D, E all of domain RGB
- Domains: RGB = {red, green, blue}
- Constraints:  $A \neq B$ ,  $A \neq C$ ,  $A \neq E$ ,  $A \neq D$ ,  $B \neq C$ ,  $C \neq D$ ,  $D \neq E$
- A solution: A=red, B=green, C=blue, D=green, E=blue



#### **Brute Force methods**

- Finding a solution by a brute force search is easy
  - Generate and test is a weak method
  - Just generate potential combinations and test each
- Potentially very inefficient
  - -With n variables where each can have one of 3 values, there are 3<sup>n</sup> possible solutions to check
- There are ~190 countries in the world, which we can color using four colors
- 4<sup>190</sup> is a big number!

```
solve(A,B,C,D,E) :
 color(A),
 color(B),
 color(C),
 color(D),
 color(E),
 not(A=B),
 not(A=B),
 not(B=C),
 not(A=C),
 not(C=D),
 not(A=E),
 not(C=D).
color(red).
color(green).
color(blue).
```

# **Example: SATisfiability**

- Given a set of logic propositions containing variables, find an assignment of the variables to {false, true} that satisfies them
- For example, the clauses:
  - $-(A \lor B \lor \neg C) \land (\neg A \lor D)$
  - -(equivalent to  $(C \rightarrow A) \vee (B \wedge D \rightarrow A)$ are satisfied by
    - A = false, B = true, C = false, D = false
- <u>Satisfiability</u> is known to be NP-complete, so in worst case, solving CSP problems requires exponential time

# Real-world problems

CSPs are a good match for many practical problems that arise in the real world

- Scheduling
- Temporal reasoning
- Building design
- Planning
- Optimization/satisfaction
- Vision

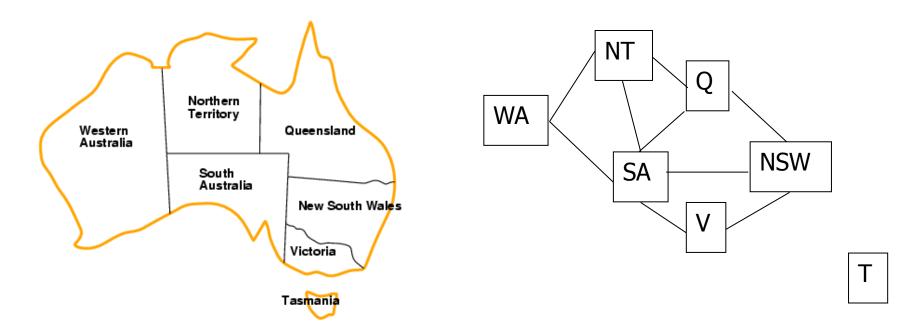
- Graph layout
- Network management
- Natural language processing
- Molecular biology / genomics
- VLSI design

#### Definition of a constraint network (CN)

A constraint network (CN) consists of

- Set of variables  $X = \{x_1, x_2, \dots x_n\}$ 
  - -with associate domains  $\{d_1, d_2, \dots d_n\}$
  - -domains are typically finite
- Set of constraints  $\{c_1, c_2 \dots c_m\}$  where
  - –each defines a predicate that is a relation over a particular subset of variables (X)
  - -e.g.,  $C_i$  involves variables  $\{X_{i1}, X_{i2}, ..., X_{ik}\}$  and defines the relation  $R_i \subseteq D_{i1} \times D_{i2} \times ... D_{ik}$

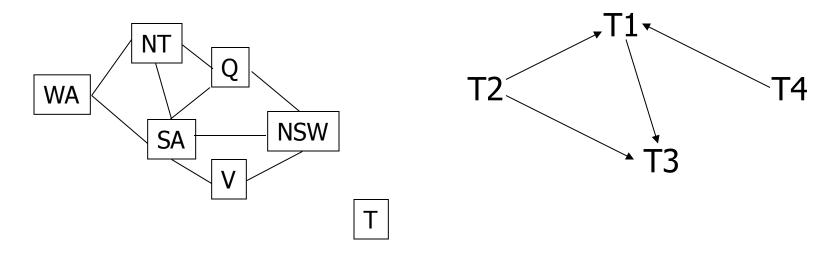
## Running example: coloring Australia



- Seven variables: {WA, NT, SA, Q, NSW, V, T}
- Each variable has same domain: {red, green, blue}
- No two adjacent variables have same value:
   WA≠NT, WA≠SA, NT≠SA, NT≠Q, SA≠Q, SA≠NSW,
   SA≠V,Q≠NSW, NSW≠V

#### Unary & binary constraints most common

Binary constraints



- Two variables are adjacent or neighbors if connected by an edge or an arc
- Possible to rewrite problems with higher-order constraints as ones with just binary constraints
- Reification

#### Formal definition of a CN

- Instantiations
  - -An **instantiation** of a subset of variables S is an assignment of a value in its domain to each variable in S
  - An instantiation is legal iff it violates no constraints
- A **solution** is a legal instantiation of all variables in the network

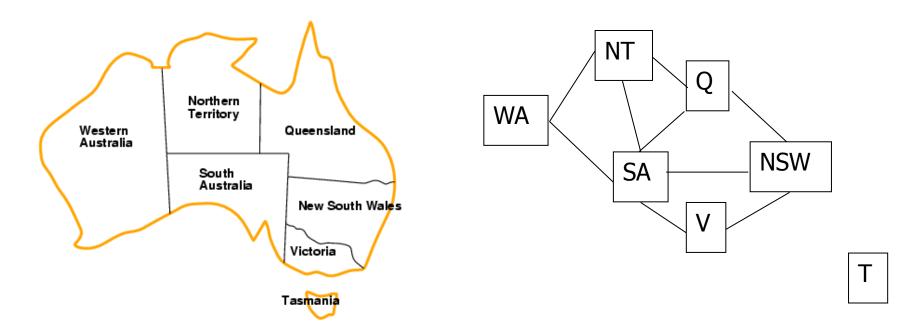
#### Typical tasks for CSP

- Solution related tasks:
  - −Does a solution *exist*?
  - -Find *one* solution
  - -Find *all* solutions
  - -Given a metric on solutions, find the *best* one
  - -Given a partial instantiation, do any of the above
- Transform the CN into an equivalent CN that is easier to solve

# **Binary CSP**

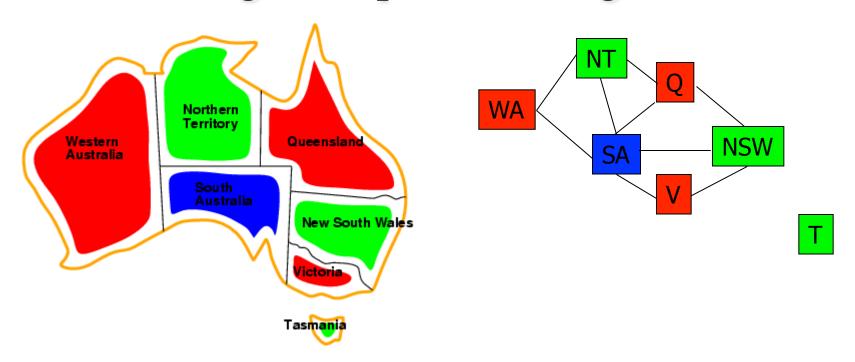
- A binary CSP is a CSP where all constraints are binary or unary
- Any non-binary CSP can be converted into a binary CSP by introducing additional variables
- A binary CSP can be represented as a **constraint graph**, with a node for each variable and an arc between two nodes iff there's a constraint involving them
  - -Unary constraints appear as self-referential arcs

## Running example: coloring Australia



- Seven variables: {WA, NT, SA, Q, NSW, V, T}
- Each variable has same domain: {red, green, blue}
- No two adjacent variables have same value:
   WA≠NT, WA≠SA, NT≠SA, NT≠Q, SA≠Q, SA≠NSW,
   SA≠V,Q≠NSW, NSW≠V

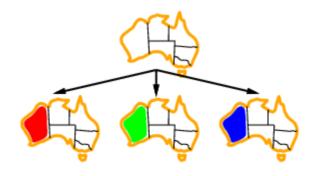
#### A running example: coloring Australia

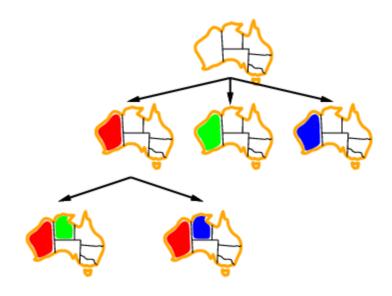


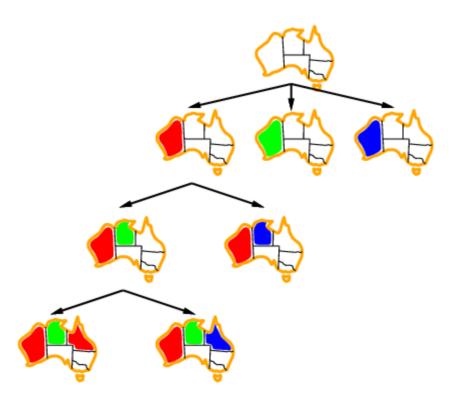
- Solutions are complete and consistent assignments
- One of several solutions
- Note that for generality, constraints can be expressed as relations, e.g., WA ≠ NT is

```
(WA,NT) in {(red,green), (red,blue), (green,red), (green,blue), (blue,red),(blue,green)}
```









#### **Basic Backtracking Algorithm**

#### CSP-BACKTRACKING(PartialAssignment a)

- − If a is complete then return a
- $X \leftarrow$  select an unassigned variable
- $-D \leftarrow$  select an ordering for the domain of X
- For each value v in D do

If v is consistent with a then

- Add (X=v) to a
- result ← CSP-BACKTRACKING(a)
- If result ≠ failure then return result
- Remove (X= v) from a
- Return failure

#### Start with CSP-BACKTRACKING({})

Note: this is depth first search; can solve n-queens problems for  $n \sim 25$ 

#### Problems with backtracking

- Thrashing: keep repeating the same failed variable assignments
- Things that can help avoid this:
  - -Consistency checking
  - -Intelligent backtracking schemes
- Inefficiency: can explore areas of the search space that aren't likely to succeed
  - -Variable ordering can help

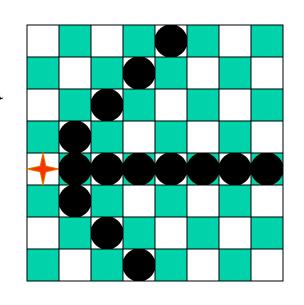
## Improving backtracking efficiency

Here are some standard techniques to improve the efficiency of backtracking

- -Can we detect inevitable failure early?
- -Which variable should be assigned next?
- -In what order should its values be tried?

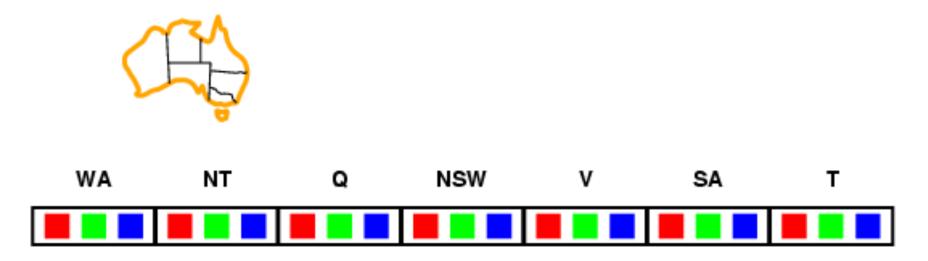
#### **Forward Checking**

After variable X is assigned to value v, examine each unassigned variable Y connected to X by a constraint and delete values from Y's domain inconsistent with v



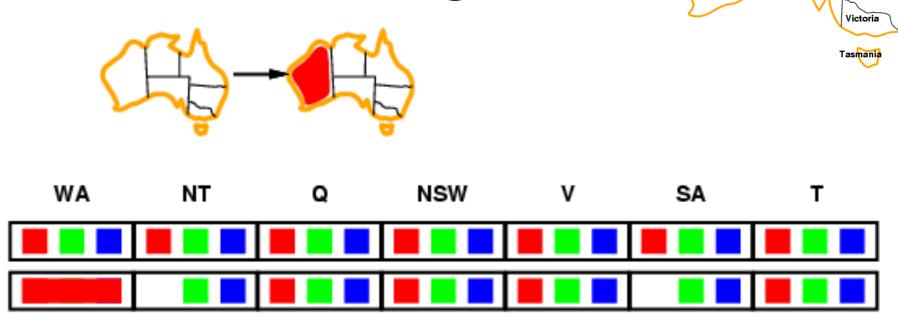
Using *forward checking* and *backward checking* roughly doubles the size of N-queens problems that can be practically solved

#### Forward checking



- Keep track of remaining legal values for unassigned variables
- Terminate search when any variable has no legal values

### Forward checking



Northern Territory

> South Australia

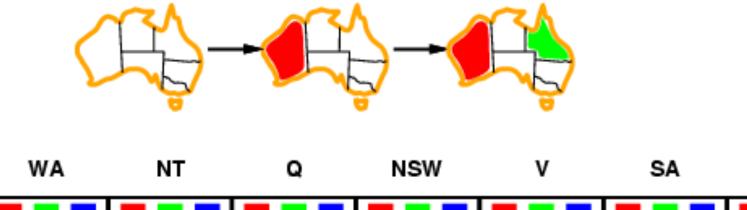
Queensland

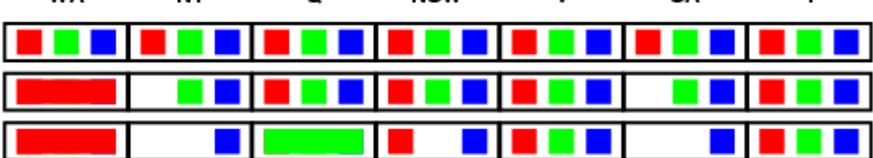
New South Wales

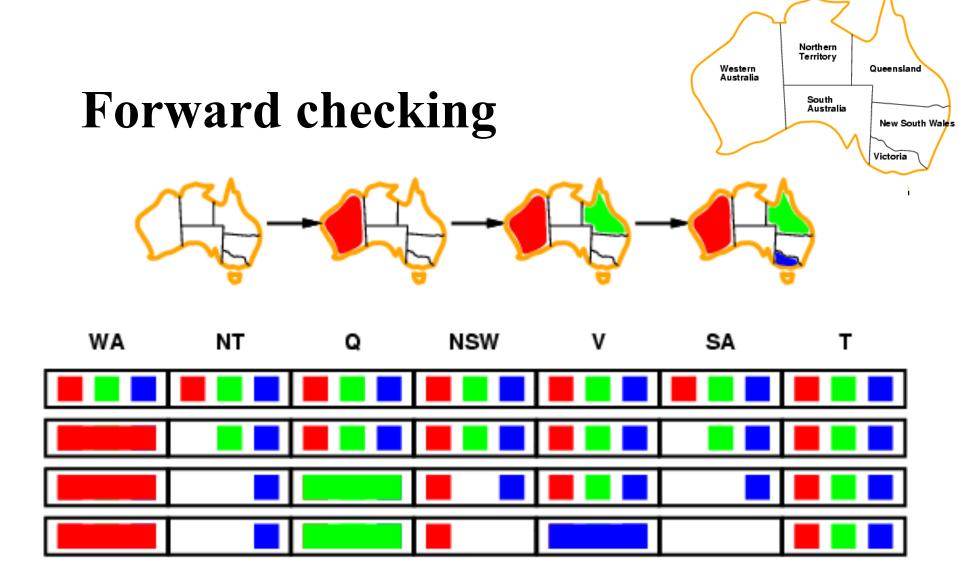
Western Australia

## Forward checking









#### Constraint propagation

• Forward checking propagates info.

from assigned to unassigned variables, but
doesn't provide early detection for all failures

Northern Territory

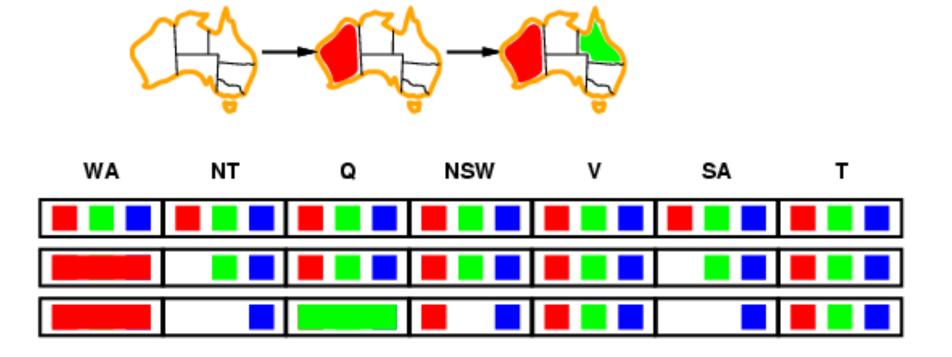
> South Australia

Queensland

Western

Australia

NT and SA cannot both be blue!



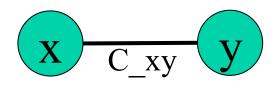
#### **Definition: Arc consistency**

- A constraint C\_xy is <u>arc consistent</u> wrt x if for each value v of x there is an allowed value of y
- Similarly define C\_xy as arc consistent wrt y
- A binary CSP is arc consistent iff every constraint C\_xy is arc consistent wrt x as well as y
- When a CSP is not arc consistent, we can make it arc consistent, e.g., by using AC3
  - -Also called "enforcing arc consistency"

## **Arc Consistency Example 1**

#### Domains

$$-D_x = \{1, 2, 3\}$$
  
 $-D_y = \{3, 4, 5, 6\}$ 



#### Constraint

-Note: for finite domains, we can represent a constraint as an enumeration of legal values

$$-C_xy = \{(1,3), (1,5), (3,3), (3,6)\}$$

• C\_xy is not arc consistent wrt x, neither wrt y. By enforcing arc consistency, we get reduced domains

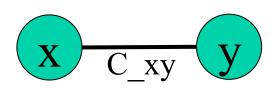
$$-D'_x = \{1, 3\}$$

$$-D' y={3, 5, 6}$$

# **Arc Consistency Example 2**

#### Domains

$$-D_x = \{1, 2, 3\}$$
  
 $-D_y = \{1, 2, 3\}$ 



#### Constraint

$$-C_xy = lambda v1, v2: v1 < v2$$

• C\_xy is not arc consistent wrt x, neither wrt y. By enforcing arc consistency, we get reduced domains

$$-D'_x = \{1, 2\}$$

$$-D'_y=\{2, 3\}$$

- Simplest form of propagation makes each arc consistent
- $X \rightarrow Y$  is consistent iff for every value x of X there is some allowed y

Northern Territory

> South Australia

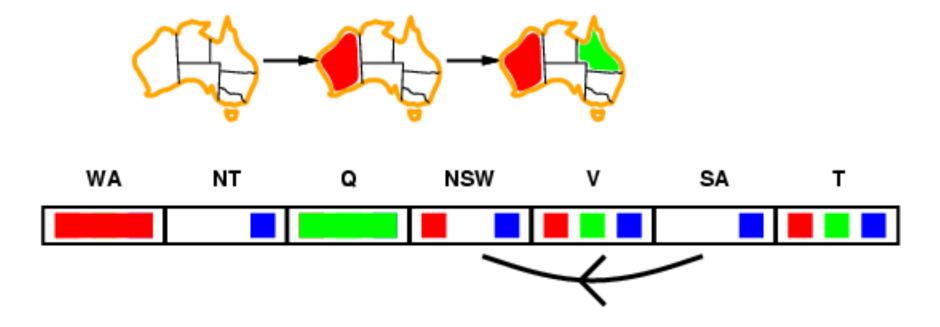
Queensland

Victoria

New South Wales

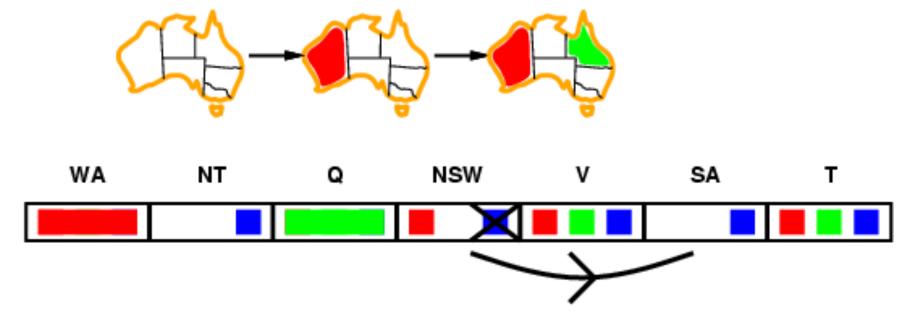
Western

Australia

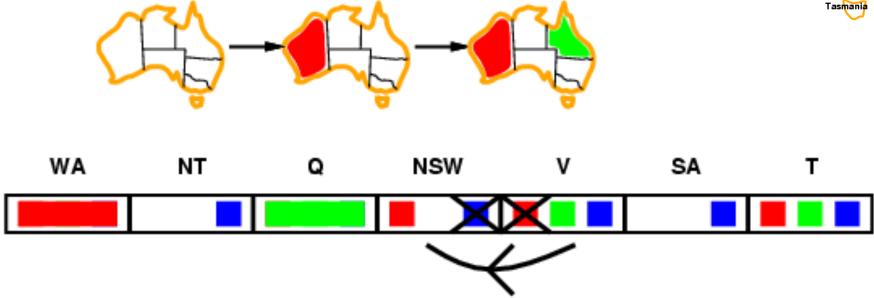




- Simplest form of propagation makes each arc consistent
- $X \rightarrow Y$  is consistent iff for every value x of X there is some allowed y







If X loses a value, neighbors of X need to be rechecked

Northern

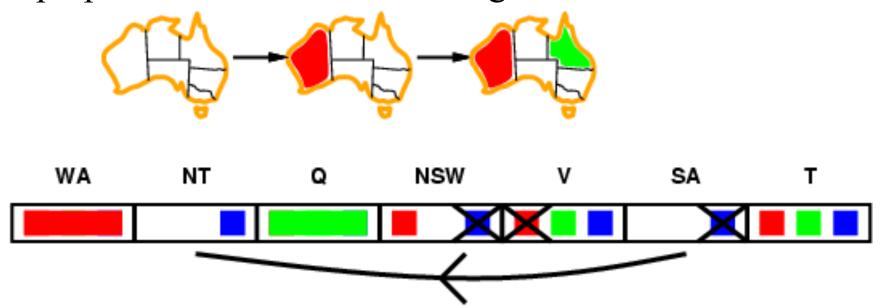
Territory

South Australia Queensland

Victoria

New South Wales

- Arc consistency detects failure earlier than simple forward checking
- WA=red and Q=green is quickly recognized as a deadend, i.e. an impossible partial instantiation
- The arc consistency algorithm can be run as a preprocessor or after each assignment



# General CP for Binary Constraints

```
Algorithm AC3
contradiction \leftarrow false
Q ← stack of all variables
while Q is not empty and not contradiction do
  X \leftarrow UNSTACK(Q)
  For every variable Y adjacent to X do
    If REMOVE-ARC-INCONSISTENCIES(X,Y)
      If domain(Y) is non-empty then STACK(Y,Q)
       else return false
```

# Complexity of AC3

- e = number of constraints (edges)
- d = number of values per variable
- Each variable is inserted in queue up to d times
- REMOVE-ARC-INCONSISTENCY takes O(d<sup>2</sup>) time
- CP takes O(ed<sup>3</sup>) time

# Improving backtracking efficiency

- Some standard techniques to improve the efficiency of backtracking
  - Can we detect inevitable failure early?
  - Which variable should be assigned next?
  - In what order should its values be tried?
- Combining constraint propagation with these heuristics makes 1000-queen puzzles feasible

#### Most constrained variable



• Most constrained variable: choose the variable with the fewest legal values



- a.k.a. minimum remaining values (MRV) heuristic
- After assigning a value to WA, both NT and SA have only two values in their domains choose one of them rather than Q, NSW, V or T

# Most constraining variable

- Western Australia

  Northern Territory

  Queensland

  South Australia

  New South Wales

  Victoria
- Tie-breaker among most constrained variables
- Choose variable involved in largest # of constraints on remaining variables



- After assigning SA to be blue, WA, NT, Q, NSW and V all have just two values left.
- WA and V have only one constraint on remaining variables and T none, so choose one of NT, Q & NSW

# Least constraining value

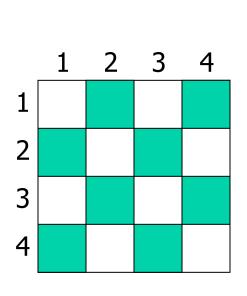
- Given a variable, choose least constraining value:
  - -the one that rules out the fewest values in the remaining variables

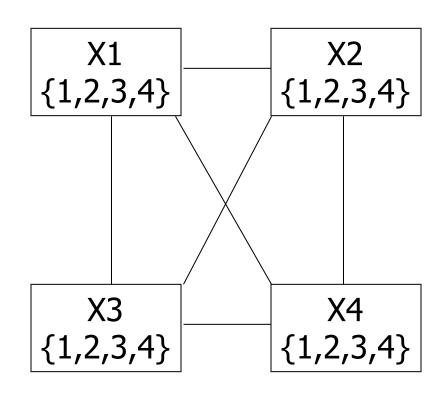


- Combining these heuristics makes 1000 queens feasible
- What's an intuitive explanation for this?

#### Is AC3 Alone Sufficient?

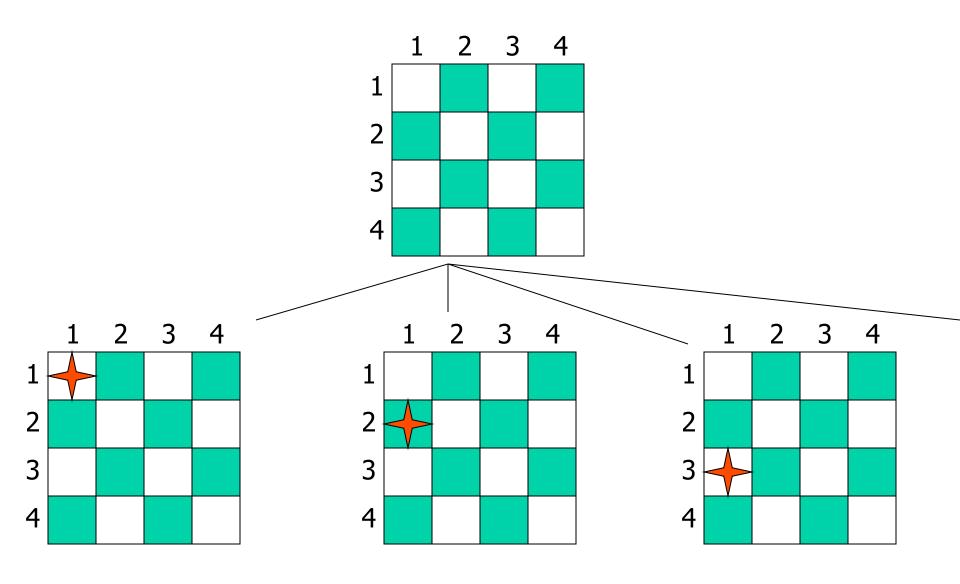
Consider the four queens problem

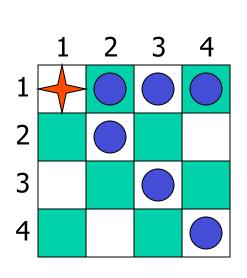


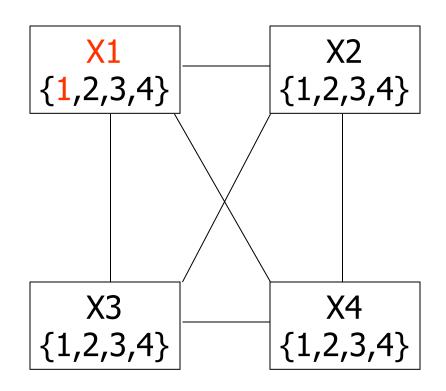


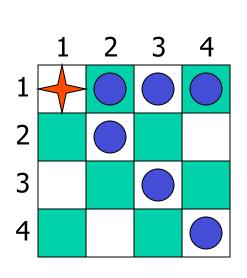
#### Solving a CSP still requires search

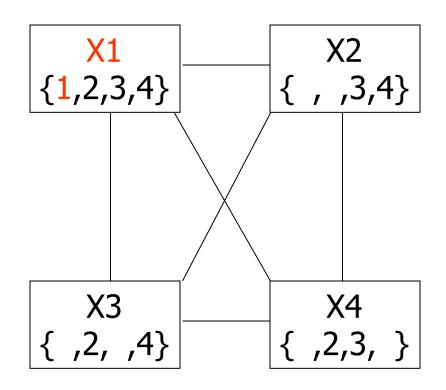
- Search:
  - -can find good solutions, but must examine non-solutions along the way
- Constraint Propagation:
  - -can rule out non-solutions, but this is not the same as finding solutions
- Interweave constraint propagation & search:
  - –perform constraint propagation at each search step

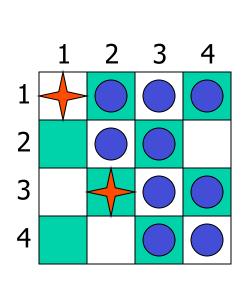


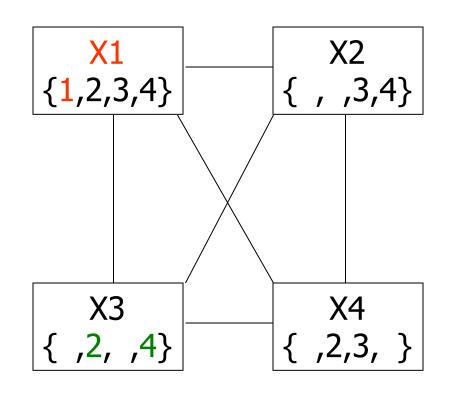




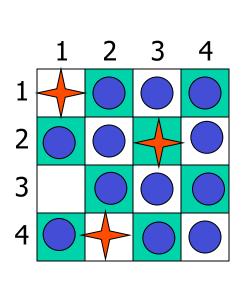


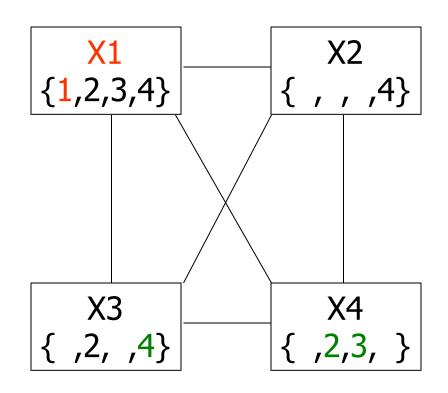




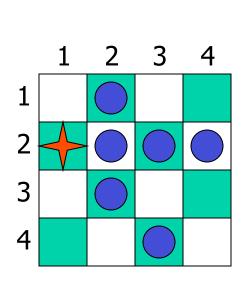


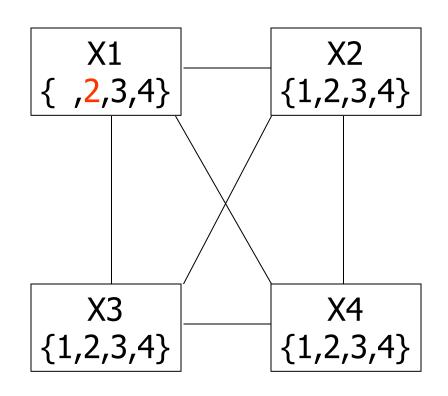
X2=3 eliminates { X3=2, X3=3, X3=4 } ⇒ inconsistent!



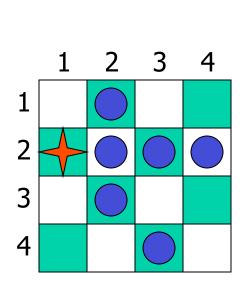


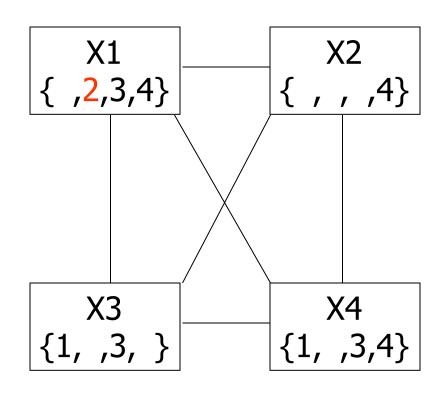
X2=4 ⇒ X3=2, which eliminates { X4=2, X4=3} ⇒ inconsistent!



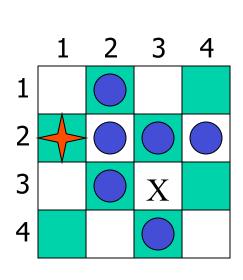


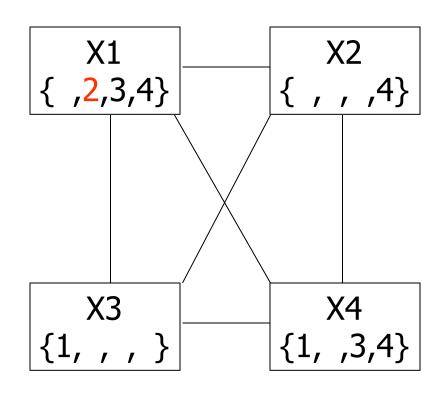
X1 can't be 1, let's try 2

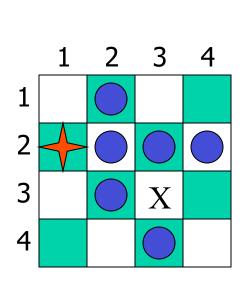


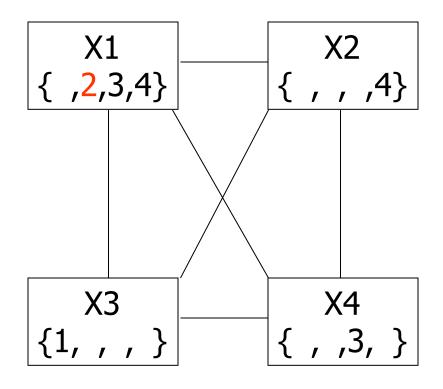


Can we eliminate any other values?

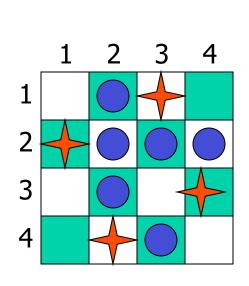


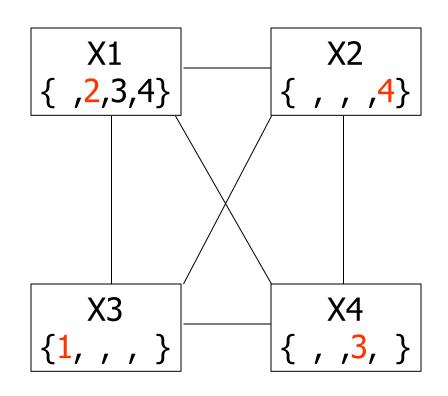






Arc constancy eliminates x3=3 because it's not consistent with X2's remaining values





There is only one solution with X1=2

# Sudoku Example

|   | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|---|---|---|---|---|---|---|---|---|---|
| Α |   |   | 3 |   | 2 |   | 6 |   |   |
| В | 9 |   |   | 3 |   | 5 |   |   | 1 |
| С |   |   | 1 | 8 |   | 6 | 4 |   |   |
| D |   |   | 8 | 1 |   | 2 | 9 |   |   |
| Е | 7 |   |   |   |   |   |   |   | 8 |
| F |   |   | 6 | 7 |   | 8 | 2 |   |   |
| G |   |   | 2 | 6 |   | 9 | 5 |   |   |
| Н | 8 |   |   | 2 |   | 3 |   |   | 9 |
| 1 |   |   | 5 |   | 1 |   | 3 |   |   |

|   | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|---|---|---|---|---|---|---|---|---|---|
| Α | 4 | 8 | 3 | 9 | 2 | 1 | 6 | 5 | 7 |
| В | 9 | 6 | 7 | 3 | 4 | 5 | 8 | 2 | 1 |
| С | 2 | 5 | 1 | 8 | 7 | 6 | 4 | 9 | 3 |
| D | 5 | 4 | 8 | 1 | 3 | 2 | 9 | 7 | 6 |
| Е | 7 | 2 | 9 | 5 | 6 | 4 | 1 | 3 | 8 |
| F | 1 | 3 | 6 | 7 | 9 | 8 | 2 | 4 | 5 |
| G | 3 | 7 | 2 | 6 | 8 | 9 | 5 | 1 | 4 |
| Н | 8 | 1 | 4 | 2 | 5 | 3 | 7 | 6 | 9 |
| ı | 6 | 9 | 5 | 4 | 1 | 7 | 3 | 8 | 2 |

How can we set this up as a CSP?

# **Sudoku**

- Digit placement puzzle on 9x9 grid with unique answer
- Given an initial partially filled grid, fill remaining squares with a digit between 1 and 9
- Each column, row, and nine 3×3 sub-grids must contain all nine digits

|   | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|---|---|---|---|---|---|---|---|---|---|
| Α |   |   | 3 |   | 2 |   | 6 |   |   |
| В | 9 |   |   | 3 |   | 5 |   |   | 1 |
| С |   |   | 1 | 8 |   | 6 | 4 |   |   |
| D |   |   | 8 | 1 |   | 2 | 9 |   |   |
| Ε | 7 |   |   |   |   |   |   |   | 8 |
| F |   |   | 6 | 7 |   | 8 | 2 |   |   |
| G |   |   | 2 | 6 |   | 9 | 5 |   |   |
| Н | 8 |   |   | 2 |   | 3 |   |   | 9 |
| 1 |   |   | 5 |   | 1 |   | 3 |   |   |

|   | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|---|---|---|---|---|---|---|---|---|---|
| Α | 4 | 8 | 3 | 9 | 2 | 1 | 6 | 5 | 7 |
| В | 9 | 6 | 7 | 3 | 4 | 5 | 8 | 2 | 1 |
| С | 2 | 5 | 1 | 8 | 7 | 6 | 4 | 9 | 3 |
| D | 5 | 4 | 8 | 1 | 3 | 2 | 9 | 7 | 6 |
| Е | 7 | 2 | 9 | 5 | 6 | 4 | 1 | 3 | 8 |
| F | 1 | 3 | 6 | 7 | 9 | 8 | 2 | 4 | 5 |
| G | 3 | 7 | 2 | 6 | 8 | 9 | 5 | 1 | 4 |
| Н | 8 | 1 | 4 | 2 | 5 | 3 | 7 | 6 | 9 |
| ı | 6 | 9 | 5 | 4 | 1 | 7 | 3 | 8 | 2 |
|   |   |   |   |   |   |   |   |   |   |

• Some initial configurations are easy to solve and some very difficult

```
def sudoku(initValue):
                                                                                             # Sample problems
  p = Problem()
                                                                                             easy = [
  # Define a variable for each cell: 11,12,13...21,22,23...98,99
                                                                                              [0,9,0,7,0,0,8,6,0]
  for i in range(1, 10):
                                                                                               [0,3,1,0,0,5,0,2,0]
    p.addVariables(range(i*10+1, i*10+10), range(1, 10))
                                                                                               [8.0,6.0,0.0,0.0,0]
  # Each row has different values
                                                                                               [0,0,7,0,5,0,0,0,6]
  for i in range(1, 10):
                                                                                               [0,0,0,3,0,7,0,0,0]
    p.addConstraint(AllDifferentConstraint(), range(i*10+1, i*10+10))
                                                                                               [5,0,0,0,1,0,7,0,0]
                                                                                               [0,0,0,0,0,0,1,0,9]
  # Each colum has different values
                                                                                               [0,2,0,6,0,0,0,5,0]
  for i in range(1, 10):
                                                                                               [0,5,4,0,0,8,0,7,0]]
    p.addConstraint(AllDifferentConstraint(), range(10+i, 100+i, 10))
  # Each 3x3 box has different values
                                                                                             hard = [
  p.addConstraint(AllDifferentConstraint(), [11,12,13,21,22,23,31,32,33])
                                                                                              [0,0,3,0,0,0,4,0,0]
                                                                                               [0,0,0,0,7,0,0,0,0]
  p.addConstraint(AllDifferentConstraint(), [41,42,43,51,52,53,61,62,63])
                                                                                               [5,0,0,4,0,6,0,0,2],
  p.addConstraint(AllDifferentConstraint(), [71,72,73,81,82,83,91,92,93])
                                                                                               [0,0,4,0,0,0,8,0,0]
                                                                                               [0,9,0,0,3,0,0,2,0],
  p.addConstraint(AllDifferentConstraint(), [14,15,16,24,25,26,34,35,36])
                                                                                               [0,0,7,0,0,0,5,0,0]
  p.addConstraint(AllDifferentConstraint(), [44,45,46,54,55,56,64,65,66])
                                                                                               [6,0,0,5,0,2,0,0,1],
  p.addConstraint(AllDifferentConstraint(), [74,75,76,84,85,86,94,95,96])
                                                                                               [0,0,0,0,9,0,0,0,0]
                                                                                               [0,0,9,0,0,0,3,0,0]
  p.addConstraint(AllDifferentConstraint(), [17,18,19,27,28,29,37,38,39])
  p.addConstraint(AllDifferentConstraint(), [47,48,49,57,58,59,67,68,69])
                                                                                             very hard = [
  p.addConstraint(AllDifferentConstraint(), [77,78,79,87,88,89,97,98,99])
                                                                                              [0,0,0,0,0,0,0,0,0]
                                                                                               [0,0,9,0,6,0,3,0,0]
                                                                                               [0,7,0,3,0,4,0,9,0],
  # add unary constraints for cells with initial non-zero values
                                                                                               [0,0,7,2,0,8,6,0,0],
  for i in range(1, 10):
                                                                                               [0,4,0,0,0,0,0,7,0]
    for j in range(1, 10):
                                                                                               [0,0,2,1,0,6,5,0,0]
       value = initValue[i-1][j-1]
                                                                                               [0,1,0,9,0,5,0,4,0],
       if value:
                                                                                               [0,0,8,0,2,0,7,0,0]
         p.addConstraint(lambda var, val=value: var == val, (i*10+j))
                                                                                               [0,0,0,0,0,0,0,0,0]
  return p.getSolution()
```

#### Local search for constraint problems

- Remember local search?
- There's a version of local search for CSP problems
- Basic idea:
  - -generate a random "solution"
  - -Use metric of "number of conflicts"
  - -Modifying solution by reassigning one variable at a time to decrease metric until solution found or no modification improves it
- Has all features and problems of local search

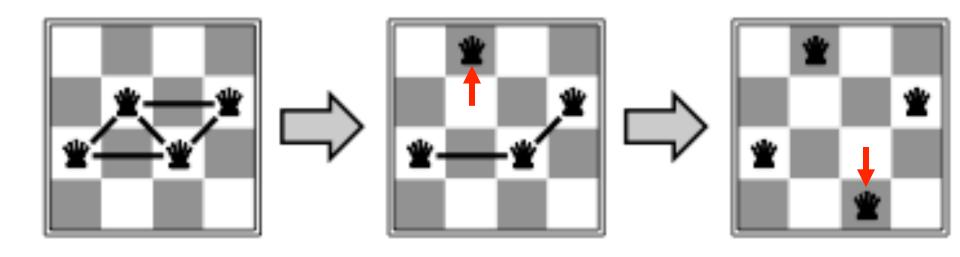
# Min Conflict Example

·States: 4 Queens, 1 per column

·Operators: Move queen in its column

·Goal test: No attacks

·Evaluation metric: Total number of attacks



How many conflicts does each state have?

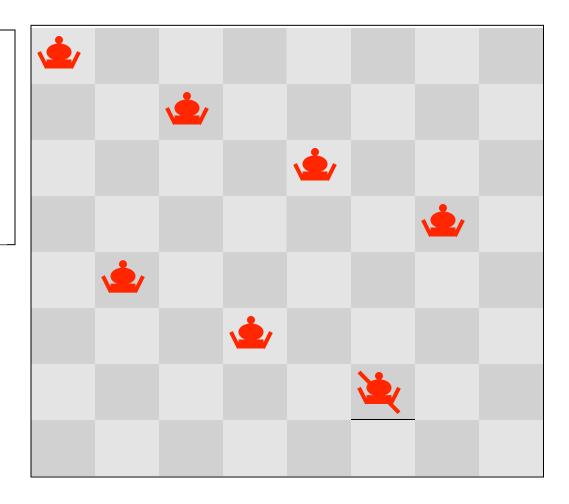
#### **Basic Local Search Algorithm**

Assign a domain value  $d_i$  to each variable  $v_i$  while no solution & not stuck & not timed out:

bestCost  $\leftarrow \infty$ ; bestList  $\leftarrow \emptyset$ ; for each variable  $v_i | \text{Cost}(\text{Value}(v_i) > 0)$ for each domain value  $d_i$  of  $v_i$ if  $Cost(d_i) < bestCost$ bestCost  $\leftarrow$  Cost( $d_i$ ); bestList  $\leftarrow$   $d_i$ ; else if  $Cost(d_i) = bestCost$  $bestList \leftarrow bestList \cup d_i$ Take a randomly selected move from bestList

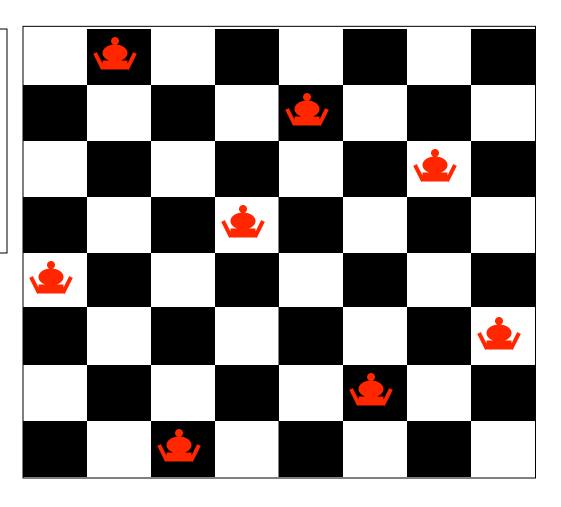
#### Eight Queens using Backtracking

Undo move for Queen 7 and so on...

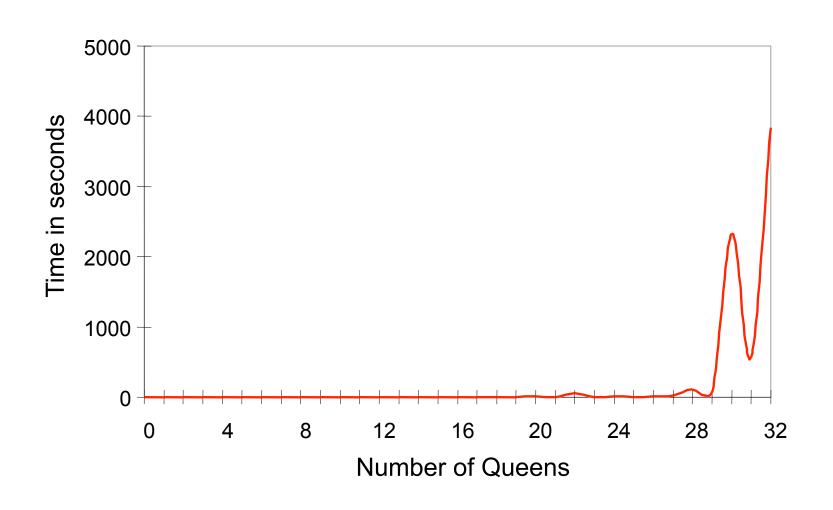


### **Eight Queens using Local Search**

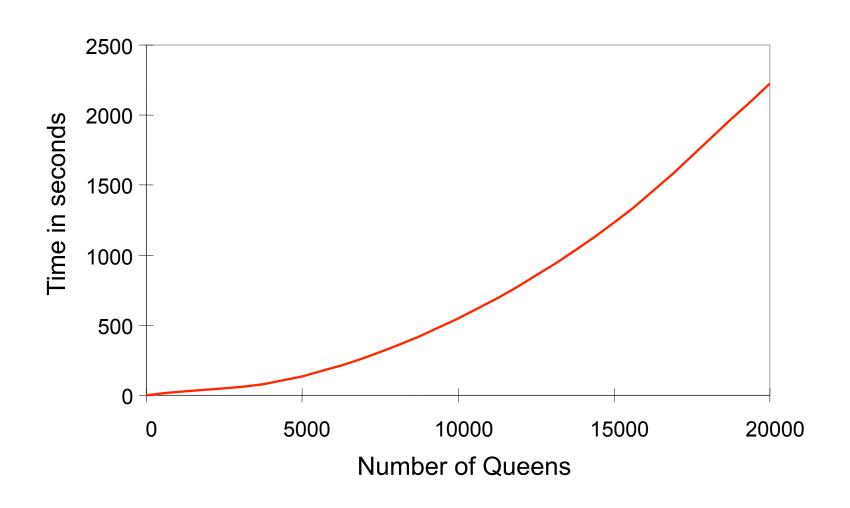
**Answer Found** 



#### **Backtracking Performance**



#### **Local Search Performance**

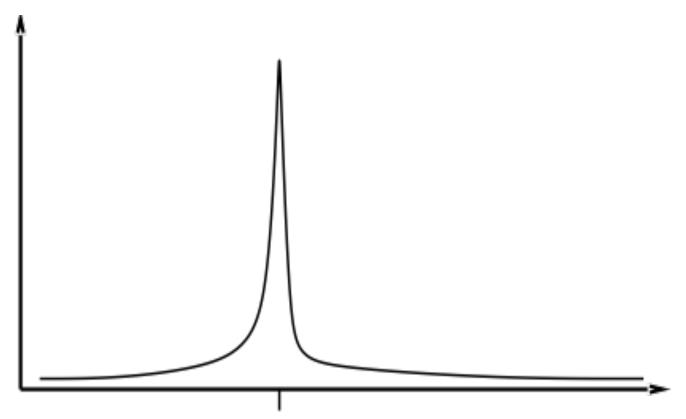


#### Min Conflict Performance

- Performance depends on quality and informativeness of initial assignment; inversely related to distance to solution
- Min Conflict often has astounding performance
- For example, it's been shown to solve arbitrary size (in the millions) N-Queens problems in constant time.
- This appears to hold for arbitrary CSPs with the caveat...

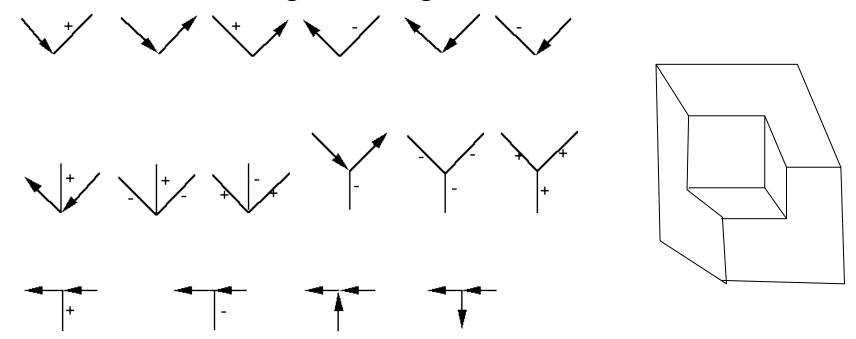
#### Min Conflict Performance

Except in a certain critical range of the ratio constraints to variables.



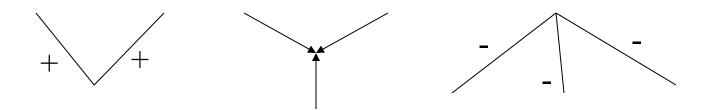
#### Famous example: labeling line drawings

- Waltz labeling algorithm, earliest AI CSP application (1972)
  - Convex interior lines are labeled as +
  - Concave interior lines are labeled as –
  - Boundary lines are labeled as
- There are 208 labeling (most of which are impossible)
- Here are the 18 legal labeling:



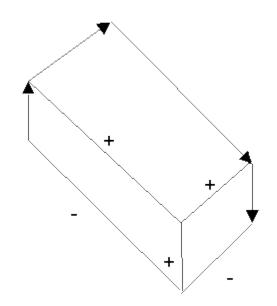
# Labeling line drawings II

• Here are some illegal labelings:

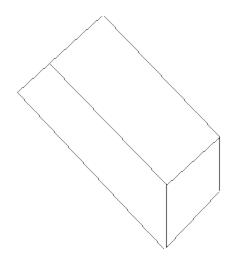


# Labeling line drawings

Waltz labeling algorithm: propagate constraints repeatedly until a solution is found

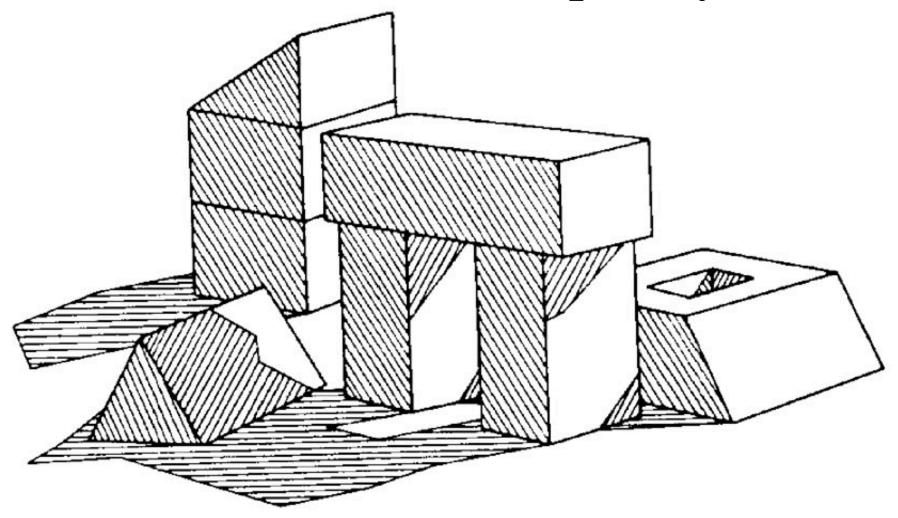


A solution for one labeling problem



A labeling problem with no solution

# Shadows add complexity



CSP was able to label scenes where some of the lines were caused by shadows

## K-consistency

- K-consistency generalizes arc consistency to sets of more than two variables.
  - -A graph is K-consistent if, for legal values of any K-1 variables in the graph, and for any Kth variable  $V_k$ , there is a legal value for  $V_k$
- Strong K-consistency = J-consistency for all J<=K</li>
- Node consistency = strong 1-consistency
- Arc consistency = strong 2-consistency
- Path consistency = strong 3-consistency

## Why do we care?

- 1. If we have a CSP with N variables that is known to be strongly N-consistent, we can solve it without backtracking
- 2. For any CSP that is **strongly K-consistent**, if we find an **appropriate variable ordering** (one with "small enough" branching factor), we can solve the CSP **without backtracking**

# Intelligent backtracking

- Backjumping: if  $V_j$  fails, jump back to the variable  $V_i$  with greatest i such that the constraint  $(V_i, V_j)$  fails (i.e., most recently instantiated variable in conflict with  $V_i$ )
- Backchecking: keep track of incompatible value assignments computed during backjumping
- Backmarking: keep track of which variables led to the incompatible variable assignments for improved backchecking

# Challenges for constraint reasoning

- What if not all constraints can be satisfied?
  - -Hard vs. soft constraints
  - Degree of constraint satisfaction
  - Cost of violating constraints
- What if constraints are of different forms?
  - -Symbolic constraints
  - -Numerical constraints [constraint solving]
  - -Temporal constraints
  - -Mixed constraints

#### Challenges for constraint reasoning

- What if constraints are represented intensionally?
  - Cost of evaluating constraints (time, memory, resources)
- What if constraints, variables, and/or values change over time?
  - -Dynamic constraint networks
  - -Temporal constraint networks
  - -Constraint repair
- What if multiple agents or systems are involved in constraint satisfaction?
  - -Distributed CSPs
  - -Localization techniques