
Some material adopted from notes
by Charles R. Dyer, University of

Wisconsin-Madison

Informed	
Search	
Chapter	4	(a)	

Today’s	class	
• Heuris'c	search	
•  Best-first	search	
– Greedy	search	
– Beam	search	
– A,	A*	
– Examples	

• Memory-conserving	varia'ons	of	A*	
• Heuris'c	func'ons	

Big	idea:	heuris>c	
Merriam-Webster's	Online	Dic>onary	
Heuris'c	(pron.	\hyu-’ris-'k\):		adj.	[from	Greek	heuriskein	to	discover]	
involving	or	serving	as	an	aid	to	learning,	discovery,	or	problem-solving	
by	experimental	and	especially	trial-and-error	methods		

The	Free	On-line	Dic>onary	of	Compu>ng	(15Feb98)		
heuris'c		1.	<programming>	A	rule	of	thumb,	simplifica'on	or	educated	
guess	that	reduces	or	limits	the	search	for	solu'ons	in	domains	that	are	
difficult	and	poorly	understood.	Unlike	algorithms,	heuris'cs	do	not	
guarantee	feasible	solu'ons	and	are	oPen	used	with	no	theore'cal	
guarantee.	2.	<algorithm>	approxima'on	algorithm.		

From	WordNet	(r)	1.6		
heuris'c	adj	1:	(CS)	rela'ng	to	or	using	a	heuris'c	rule	2:	of	or	rela'ng	to	
a	general	formula'on	that	serves	to	guide	inves'ga'on	[ant:	algorithmic]	
n	:	a	commonsense	rule	(or	set	of	rules)	intended	to	increase	the	
probability	of	solving	some	problem	[syn:	heuris'c	rule,	heuris'c	
program]		

Informed	methods	add		
domain-specific	informa>on	

•  Add	domain-specific	informa'on	to	select	best	
path	along	which	to	con'nue	searching	

•  Define	heuris'c	func'on,	h(n),	that	es'mates	
goodness	of	node	n	

•  h(n)	=	es>mated	cost	(or	distance)	of	minimal	
cost	path	from	n	to	a	goal	state.		

•  Heuris'c	func'on	is	an	es'mate,	based	on	
domain-specific	informa'on,	computable	from	
current	state	descrip'on,	of	how	close	we	are	
to	a	goal		

Heuris>cs	
• All	domain	knowledge	used	in	search	is	encoded	in	
the	heuris>c	func>on,	h()	
• A	weak	method	due	to	limited	way	domain-specific	
informa'on	used	to	solve	problem		
• Examples	
– Missionaries	&	Cannibals:	#	people	on	star'ng	river	bank	
– 8-puzzle:	number	of	'les	out	of	place		
–  8-puzzle:	sum	of	distances	each	'le	is	from	its	goal	posi'on		

•  In	general	
– h(n)	>=	0	for	all	nodes	n		
– h(n)	=	0	implies	that	n	is	a	goal	node		
– h(n)	=	∞	implies	n	is	a	dead-end	that	can’t	lead	to	a	goal	

Weak	vs.	strong	methods	
•  Weak	methods	are	extremely	general	methods	not	
tailored	to	a	specific	situa'on	or	domain	

•  Examples	include		
– Generate	and	test:	generate	solu'on	candidates	and	test	
un'l	you	find	one	
– Means-ends	analysis:	represent	current	situa'on	&	goal,	
then	seek	ways	to	shrink	differences	between	them	
– Space	spliVng:	list	possible	solu'ons	to	a	problem,	then	
try	to	rule	out	classes	of	the	possibili'es	
– Subgoaling:	split	large	problem	into	smaller	ones	that	can	
be	solved	one	at	a	'me	

• Called	weak	because	they	don’t	use	more	powerful,	
domain-specific	heuris'cs	

Heuris>cs	for	8-puzzle		

The number of
misplaced tiles
(not including
the blank)

1 2 3
4 5 6
7 8

1 2 3
4 5 6
7 8

In this case, only “8” is misplaced, so heuristic
function evaluates to 1

In other words, the heuristic says that it thinks a
solution might be available in just 1 more move

Goal
State

Current
State

1 2 3
4 5 6
7 8

1 2 3
4 5 6
7 8

N N N
N N N
N Y

Heuris>cs	for	8-puzzle		

Manhattan
Distance (not
including the
blank)

•  The 3, 8 and 1 tiles are misplaced (by 2, 3,
and 3 steps) so the heuristic function
evaluates to 8

•  Heuristic says that it thinks a solution is
available in just 8 more moves.

•  The misplaced heuristic’s value is 3

3 2 8
4 5 6
7 1

1 2 3
4 5 6
7 8

Goal
State

Current
State

3 3

8

8

1

1

2 spaces

3 spaces

3 spaces

Total 8

5

6 4

3

4 2

1 3 3

0 2

We can use heuristics
to guide search

In this
hill climbing
example, the
Manhattan Distance
heuristic helps us
quickly find a
solution to the 8-
puzzle

h(n)

1 2 3
4 5
7 8 6

1 2 3
4 5

7 8 6

1 3
4 2 5
7 8 6

1 2
4 5 3
7 8 6

1 2 3
4 5 6
7 8

1 2 3
4 5
7 8 6

1 2 3
4 8 5

7 6

1 2 3
4 8 5
7 6

1 2 3
4 8 5
7 6

1 2
4 8 3
7 6 5

1 2 3
4 8
7 6 5

goal

1 2 3
4 5 8
6 7

1 2 3
4 5
6 7 8

1 2 3
4 5 8
6 7

1 2 3
4 5
6 7 8

1 2
4 5 3
6 7 8

6

7 5

6 6

In this example,
hill climbing
doesn’t work!

All nodes on
fringe are taking a
step “backwards”
(local minima)

This puzzle is
solvable in just 12
more steps

h(n)

Best-first	search	

•  Search	algorithm	that	op'mizes	depth-
first	search	by	expanding	most	promising	
node	chosen	according	to	heuris'c	rule	

•  Order	nodes	on	nodes	list	by	increasing	
value	of	an	evalua'on	func'on,	f(n),	
incorpora'ng	domain-specific	informa'on	

•  This	is	a	generic	way	of	referring	to	the	
class	of	informed	methods	

Greedy	best	first	search	search	
•  A	greedy	algorithm	makes	locally	op'mal	
choices	in	hope	of	finding	a	global	
op'mum	
•  Uses	evalua'on	func'on	f(n)	=	h(n),	
sor'ng	nodes	by	increasing	values	of	f	
•  Selects	node	to	expand	appearing	closest	
to	goal	(i.e.,	node	with	smallest	f	value)		
•  Not	complete		
•  Not	admissible,	as	in	example	
– Assume	arc	costs	=	1,	greedy	search	finds	
goal	g,	with	solu'on	cost	of	5	
– Op'mal	solu'on	is	path	to	goal	with	cost	3	

		

a

h b

c

d

e

g

i

g2

h=2

h=1

h=1

h=1

h=0

h=4

h=1

h=0

Beam	search	
•  Use	evalua'on	func'on	f(n),	but	maximum	
size	of	the	nodes	list	is	k,	a	fixed	constant		

•  Only	keep	k	best	nodes	as	candidates	for	
expansion,	discard	rest		

•  k	is	the	beam	width	
•  More	space	efficient	than	greedy	search,	but	
may	discard	nodes	on	a	solu'on	path		

•  As	k	increases,	approaches	best	first	search	
•  Not	complete		
•  Not	admissible	(op'mal)	

Algorithm	A	
• Use	as	an	evalua'on	func'on	

f(n)	=	g(n)	+	h(n)	
• g(n)	=	minimal-cost	path	from	the	
start	state	to	state	n	
• g(n)	term	adds	“breadth-first”	
component	to	evalua'on	func'on	
• Ranks	nodes	on	search	fron'er	by	
es'mated	cost	of	solu'on	from	
start	node	via	given	node	to	goal	
• Not	complete	if	h(n)	can	=	∞	
• Not	admissible	(op'mal)	

S

B A

D
G

1 5 8

3

0

1

5

C

1

9

4

5
8

9

g(d)=4
h(d)=9

C is chosen
next to expand

E

7

8

Algorithm	A	
1	Put	the	start	node	S	on	the	nodes	list,	called	OPEN		
2	If	OPEN	is	empty,	exit	with	failure		
3	Select	node	in	OPEN	with	minimal	f(n)	and	place	on	CLOSED	
4	If	n	is	a	goal	node,	collect	path	back	to	start	and	stop	
5	Expand	n,	genera'ng	all	its	successors	and	ahach	to	them	
pointers	back	to	n.		For	each	successor	n'	of	n		
1	If	n’	not	already	on	OPEN	or	CLOSED	

• put	n'	on	OPEN	
• compute	h(n'),		g(n')=g(n)+	c(n,n'),		f(n')=g(n')+h(n')	

2	If	n’	already	on	OPEN	or	CLOSED	and	if	g(n')	is	lower	for	new	
version	of	n',	then:	
• Redirect	pointers	backward	from	n’	on	path	with	lower	g(n’)	
• Put	n'	on	OPEN	
	

Algorithm	A*	
• Pronounced	“a	star”	
• Algorithm	A	with	constraint	that	h(n)	<=	h*(n)	
• h*(n)	=	true	cost	of	minimal	cost	path	from	n	to	a	
goal		
• h	is	admissible	when	h(n)	<=	h*(n)	holds	
• Using	an	admissible	heuris'c	guarantees	that	1st	
solu'on	found	will	be	an	op'mal	one	
• A*	is	complete	whenever	branching	factor	is	finite	
and	every	operator	has	fixed	posi've	cost		
• A*	is	admissible		

Hart, P. E.; Nilsson, N. J.; Raphael, B. (1968). "A Formal Basis for the Heuristic Determination of
Minimum Cost Paths". IEEE Transactions on Systems Science and Cybernetics SSC4 4 (2): 100–107.

Observa>ons	on	A	
•  Perfect	heuris>c:	If	h(n)	=	h*(n)	for	all	n,	then	only	nodes	
on	an	op'mal	solu'on	path	are	expanded;	no	extra	work	
is	performed	
•  Null	heuris>c:	If	h(n)	=	0	for	all	n,	then	it	is	an	admissible	
heuris'c	and	A*	acts	like	uniform-cost	search	
•  Be_er	heuris>c:	If	h1(n)	<	h2(n)	<=	h*(n)	for	all	non-goal	
nodes,	then	h2	is	a	be<er	heuris'c	than	h1		
– If	A1*	uses	h1,	and	A2*	uses	h2,	then	every	node	
expanded	by	A2*	is	also	expanded	by	A1*		
– i.e.,	A1	expands	at	least	as	many	nodes	as	A2*	
– We	say	that	A2*	is	be<er	informed	than	A1*	
•  The	closer	h	to	h*,	the	fewer	extra	nodes	expanded		

Example	search	space	

S

C B A

D G E

1 5 8

9 4 5
3

7

8

8 4 3

∞ ∞ 0

0

1

4 8 9

8 5

Example	search	space	

S

C B A

D G E

1 5 8

9 4 5
3

7

8

8 4 3

∞ ∞ 0

start state

goal state

arc cost

h value

parent pointer

0

1

4 8 9

8 5

g value

Example	
n g(n) h(n) f(n) h*(n)
S 0 8 8 9
A 1 8 9 9
B 5 4 9 4
C 8 3 11 5
D 4 inf inf inf
E 8 inf inf inf
G 9 0 9 0

•  h*(n)	is	(hypothe'cal)	perfect	heuris'c	(an	oracle)	
•  Since	h(n)	<=	h*(n)	for	all	n,	h	is	admissible	(op'mal)	
•  Op'mal	path	=	S	B	G	with	cost	9	

S

C B A

D G E

1 5 8

9
4 5

3
7

8

8 4 3

∞ ∞ 0

0

1

4 8 9

8 5

Greedy	search	

f(n)	=	h(n)	
node expanded nodes list
 { S(8) }
 S { C(3) B(4) A(8) }
 C { G(0) B(4) A(8) }
 G { B(4) A(8) }

•  Solu'on	path	found	is	S	C	G,	3	nodes	expanded.		
•  See	how	fast	the	search	is!!	But	it	is	NOT	op'mal.		

S

C B A

D G E

1 5 8

9
4 5

3
7

8

8 4 3

∞ ∞ 0

0

1

4 8 9

8 5

A*	search	
f(n)	=	g(n)	+	h(n)		

node exp. nodes list
 { S(8) }
 S { A(9) B(9) C(11) }
 A { B(9) G(10) C(11) D(inf) E(inf) }
 B { G(9) G(10) C(11) D(inf) E(inf) }
 G { C(11) D(inf) E(inf) }

	
•  Solu'on	path	found	is	S	B	G,	4	nodes	expanded..			
•  S'll	prehy	fast.	And	op'mal,	too.	

S

C B A

D G E

1 5 8

9
4 5

3
7

8

8 4 3

∞ ∞ 0

0

1

4 8 9

8 5

Proof	of	the	op>mality	of	A*	
• Assume	that	A*	has	selected	G2,	a	goal	state	
with	a	subop'mal	solu'on,	i.e.,	g(G2)	>	f*	
• Proof	by	contradic'on	shows	it’s	impossible	
– Choose	a	node	n	on	an	op'mal	path	to	G	
– Because	h(n)	is	admissible,		f*	>=	f(n)	
– If	we	choose	G2	instead	of	n	for	expansion,	then	
f(n)	>=	f(G2)	
– This	implies	f*	>=	f(G2)	
– G2	is	a	goal	state:	h(G2)	=	0,	f(G2)	=	g(G2).		
– Therefore	f*	>=	g(G2)	
– Contradic'on	

Dealing	with	hard	problems	
•  For	large	problems,	A*	may	require	too	much	
space	

•  Varia'ons	conserve	memory:	IDA*	and	SMA*	
•  IDA*,	itera've	deepening	A*,	uses	successive	
itera'on	with	growing	limits	on	f,	e.g.	
– A*	but	don’t	consider	a	node	n	where	f(n)	>10	
– A*	but	don’t	consider	a	node	n	where	f(n)	>20	
– A*	but	don’t	consider	a	node	n	where	f(n)	>30,	...	

•  SMA*	--	Simplified	Memory-Bounded	A*	
– Uses	queue	of	restricted	size	to	limit	memory	use	

Finding	good	heuris>cs	
•  If	h1(n)	<	h2(n)	<=	h*(n)	for	all	n,	h2	is	beher	than	
(dominates)	h1	

•  Relaxing	problem:	remove	constraints	for	easier	
problem;	use	its	solu'on	cost	as	heuris'c	func'on	

•  Combining	heuris'cs:	max	of	two	admissible	
heuris'cs	is	an	admissible	heuris'c,	and	it’s	beher!	

•  Use	sta's'cal	es'mates	to	compute	h;	may	lose	
admissibility	

•  Iden'fy	good	features,	then	use	learning	algorithm	
to	find	heuris'c	func'on;	also	may	lose	admissibility	

In-class	Exercise:	Crea>ng	Heuris>cs	

8-Puzzle

N-Queens

Missionaries and
Cannibals

Remove 5
Sticks

Water Jug Problem

5 2

Route Planning

Summary:	Informed	search	
• Best-first	search	is	general	search	where	minimum-cost	
nodes	(w.r.t.	some	measure)	are	expanded	first	
• Greedy	search	uses	minimal	es'mated	cost	h(n)	to	goal	
state	as	measure;	reduces	search	'me,	but	is	neither	
complete	nor	op'mal	
• A*	search	combines	uniform-cost	search	&	greedy	
search:	f(n)	=	g(n)	+	h(n).		Handles	state	repe''ons	&	
h(n)	never	overes'mates	
– A*	is	complete	&	op'mal,	but	space	complexity	high	
– Time	complexity	depends	on	quality	of	heuris'c	func'on	

– IDA*	and	SMA*	reduce	the	memory	requirements	of	A*		

