
Search	in	
Python	
Chapter	3	

Today’s	topics	

•  AMAI	Python	code	
•  What	it	does	
•  How	to	use	it	
•  Worked	example:	water	jug	
program	

Install	AIMA	Python	code	with	pip	

•  For	some	of	the	HW	assignments,	you’ll	need	
access	the	aima	python	soDware	

•  Install	aima	module	on	your	own	Linux	or	Mac	
sudo	pip	install	aima	

• Install	without	sudo	privileges	
pip	install	aima	--user	

• This	won’t	work	on	UMBC’s	gl	servers	because	
pip	is	not	installed	
	

	

Working	on	gl	

•  On	gl,	you	tell	Python	to	look	in	the	directory	
we’ve	set	up	for	471	python	code	

•  Or	you	can	set	up	your	own	directory	(e.g.,	~/
mypython)	in	which	you	install	new	packages	

•  For	either,	you	must	first	add	the	appropriate	
directories	to	your	PYTHONPATH	environment	
variable	
– Do	this	by	modifying	your	shell	iniXalizaXon	file	
(e.g.,	~/.cshrc	or	~/.bashrc)	

	
	

Python	and	PYTHONPATH	
•  Python’s	import	command	looks	for	modules	to	load	
in	a	list	of	places	

•  sys.path	is	the	list,	with	‘‘ as	the	current	directory	
>>> import sys
>>> sys.path
[‘ ‘, '/usr/lib64/python26.zip', …]

•  On	Unix,	when	python	starts,	it	prepends	directories	
on	your	PYTHONPATH	environment	variable	

•  Add	new	directories	for	python	to	search	by	seZng	
PYTHONPATH		in	the	init	file	used	by	your	shell	

•  The	Unix	command	echo	$SHELL	shows	what	shell	
you	are	using	
	

	

AIMA	Python	code	
•  Install	aima	module	on	your	own	Linux	or	Mac	

sudo	pip	install	aima	

• Install	without	sudo	privileges	
pip	install	aima	--user	

•  Install	on	gl	(no	pip	L)	
– Add	to	.bashrc	to	set	directory	for	packages	

export	PYTHONPATH=	~/mypy:	
– easy_install	-d	~/mypy	aima	

•  Use	our	installaXon,	add	to	.bashrc	
– export	PYTHONPATH=	~finin/pub/471python:	

	

Using	the	471	installaIon	on	gl	

• echo	$SHELL	shows	what	shell	you	are	using	
•  If	using	tcsh	shell,	add	to	your	.cshrc	file	
setenv	PYTHONPATH	~finin/pub/471python	

•  If	using	bash	shell,	add	
PYTHONPATH=	~finin/pub/471python:	

	

Installing	your	own	packages	on	gl	

• You	can	also	install	aima	(or	other	packages)	in	
your	own	library	directory,	e.g.,	~/mypy	

• Step	#1:	add	~/mypy	to	PYTHONPATH	in	your	
shell	iniXalizaXon	file	
– tcsh:	setenv	PYTHONPATH	~/mypy	
– bash:	PYTHONPATH=	~finin/pub/471python:	

• Step	#2:	use	easy_install	and	specify	the	
directory	to	put	the	files,	e.g.	
– easy_install	-d	~/mypy	aima	

	

Overview	
To	use	the	AIMA	python	code	for	solving	the	
two	water	jug	problem	(WJP)	using	search	we	
need	one	problem-specific	file:	
– wj.py:	defines	the	problem,	states,	goal,	acXons,	
costs,	etc.	

And	one	general	file:	
–  search.py:	AIMA’s	generic	search	framework,	
imported	by	wj.py	
	

Two	Water	Jugs	Problem	

•  Given	two	water	jugs,	J1	and	J2,	with	
capaciXes	C1	and	C2	and	iniXal	amounts	W1	
and	W2,	find	acXons	to	end	up	with	amounts	
W1’	and	W2’	in	the	jugs	

•  Example		problem:		
– We	have	a	5	gallon	and	a	2	gallon	jug	
– IniXally	both	are	full	
– We	want	to	end	up	with	exactly	one	gallon	
in	J2	and	don’t	care	how	much	is	in	J1	

search.py	
• Defines	a	Problem	class	for	a	search	problem	
• Provides	funcXons	to	perform	various	kinds	of	
search	given	an	instance	of	a	Problem,	e.g.,	
breadth	first,	depth	first,	hill	climbing,	A*,	…	

•  InstrumentedProblem	subclasses	Problem	and	is	
used	with	compare_searchers	for	evaluaXon	

• To	use	for	WJP:	(1)	decide	how	to	represent	the	
WJP,	(2)	define	WJP	as	a	subclass	of	Problem	and	
(3)	provide	methods	to	(a)	create	a	WJP	instance,	
(b)	compute	successors	and	(c)	test	for	a	goal	
	

Two	Water	Jugs	Problem	
Given	J1	and	J2	with	
capaciXes	C1	and	C2	
and	iniXal	amounts	
W1	and	W2,	find	
acXons	to	end	up	with	
W1’	and	W2’	in	jugs	
	

State	RepresentaIon	
State	=	(x,y),	where	x	&	y	
are	water	in	J1	&	J2	
•  IniXal	state	=	(5,0)		
• Goal	state	=	(*,1),	
where	*	is	any	amount		

Actions Cond. Transition Effect

Empty J1 – (x,y)→(0,y) Empty J1

Empty J2
–

(x,y)→(x,0) Empty J2

2to1 x ≤ 3 (x,2)→(x+2,0) Pour J2 into
J1

1to2 x ≥ 2 (x,0)→(x-2,2) Pour J1 into
J2

1to2part y < 2 (1,y)→(0,y+1) Pour J1 into
J2 until full

Operator table

Our	WJ	problem	class	
class	WJ(Problem):	
	

				def	__init__(self,	capaciIes=(5,2),	iniIal=(5,0),	goal=(0,1)):	
								self.capaciXes	=	capaciXes	
								self.iniXal	=	iniXal	
								self.goal	=	goal	
	

				def	goal_test(self,	state):		#	returns	True	iff	state	is	a	goal	state	
								g	=	self.goal	
								return	(state[0]	==	g[0]	or	g[0]	==	'*')	and	\	
																				(state[1]	==	g[1]	or	g[1]	==	'*')	
	

	def	__repr__(self):					#	returns	string	represenXng	the	object	
								return	"WJ({},{},{})”.format(self.capaciXes,	self.iniXal,	self.goal)	

Our	WJ	problem	class	
	def	acIons(self,	(J0,	J1)):	
								"""	generates	legal	acXons	for	state	"""	
								(C0,	C1)	=	self.capaciXes	
								if	J0	>	0:	yield	'dump0'	
								if	J1>0:	yield	'dump1'	
								if	J1<C1	and	J0>0:	yield	'pour_0_1'	
								if	J0<C0	and	J1>0:	yield	'pour_1_0'	

Our	WJ	problem	class	
	def	result(self,	state,	acXon):	
								(J0,	J1)	=	state	
								(C0,	C1)	=	self.capaciXes	
								if	acXon	==	'dump0':	return	(0,	J1)	
								elif	acXon	==	'dump1':	return	(J0,	0)	
								elif	acXon	==	'pour_0_1':		

					delta	=	min(J0,	C1-J1);	return	(J0-delta,	J1+delta)	
								elif	acXon	==	'pour_1_0':	
												delta	=	min(J1,	C0-J0);	return	(J0+delta,	J1-delta)	
								raise	ValueError('Unrecognized	acXon:	'	+	acXon)	

Our	WJ	problem	class	
	def	h(self,	node):	
								#	heurisXc	funcXon	that	esXmates	distance	
								#	to	a	goal	node	
								return	0	if	self.goal_test(node.state)	else	1	

Solving	a	WJP	
code>	python	
>>>	from	wj	import	*																																																			#	Import	wj.py	and	search.py	
>>>	from	aima.search	import	*									
>>>	p1	=	WJ((5,2),	(5,2),	('*',	1))																																#	Create	a	problem	instance	
>>>	p1																																																																
WJ((5,	2),(5,	2),('*',	1))	
>>>	answer	=	breadth_first_search(p1)					#	Used	the	breadth	1st	search	funcXon	
>>>	answer																																																																				#	Will	be	None	if	the	search	failed	or	a																																																	
<Node	(0,	1)>																																																																#				a	goal	node	in	the	search	graph	if	successful	
>>>	answer.path_cost																																																	#	The	cost	to	get	to	every	node	in	the	search	graph	
6																																																																																						#		is	maintained	by	the	search	procedure	
>>>	path	=	answer.path()																																											#	A	node’s	path	is	the	best	way	to	get	to	it	from	
>>>	path																																																																									#			the	start	node,	i.e.,	a	soluXon	
[<Node	(0,	1)>,	<Node	(1,	0)>,	<Node	(1,	2)>,	<Node	(3,	0)>,	<Node	(3,	2)>,	<Node	(5,	0)>,	<Node	(5,	2)>]	
>>>	path.reverse()	
>>>	path	
[<Node	(5,	2)>,	<Node	(5,	0)>,	<Node	(3,	2)>,	<Node	(3,	0)>,	<Node	(1,	2)>,	<Node	(1,	0)>,	<Node	(0,	1)>]	
	

Comparing	Search	Algorithms	Results	

Uninformed	searches:	breadth_first_tree_search,	
breadth_first_search,	depth_first_graph_	search,	
iteraXve_deepening_search,	depth_limited_	search	
• All	but	depth_limited_search	are	sound	(i.e.,	
soluXons	found	are	correct)	

• Not	all	are	complete	(i.e.,	can	find	all	soluXons)	
• Not	all	are	opImal	(find	best	possible	soluXon)	
• Not	all	are	efficient	
• AIMA	code	has	a	comparison	funcXon	

Comparing	Search	Algorithms	Results	
HW2>	python	
Python	2.7.6	|Anaconda	1.8.0	(x86_64)|	...	
>>>	from	wj	import	*	
>>>	searchers=[breadth_first_search,	depth_first_graph_search,	
iteraXve_deepening_search]		
>>>	compare_searchers([WJ((5,2),	(5,0),	(0,1))],	['SEARCH	ALGORITHM',	
'successors/goal	tests/states	generated/soluXon'],	searchers)	
SEARCH	ALGORITHM													successors/goal	tests/states	generated/soluXon	
breadth_first_search									<			8/			9/		16/(0,	>																											
depth_first_graph_search					<			5/			6/		12/(0,	>																											
iteraXve_deepening_search			<		35/		61/		57/(0,	>																											
>>>		
	

The	Output	
hhw2>	python	wjtest.py	-s	5	0	-g	0	1	
Solving	WJ((5,	2),(5,	0),(0,	1)	
			breadth_first_tree_search	cost	5:	(5,	0)	(3,	2)	(3,	0)	(1,	2)	(1,	0)	(0,	1)	
			breadth_first_search	cost	5:	(5,	0)	(3,	2)	(3,	0)	(1,	2)	(1,	0)	(0,	1)	
			depth_first_graph_search	cost	5:	(5,	0)	(3,	2)	(3,	0)	(1,	2)	(1,	0)	(0,	1)	
			iteraXve_deepening_search	cost	5:	(5,	0)	(3,	2)	(3,	0)	(1,	2)	(1,	0)	(0,	1)	
			astar_search	cost	5:	(5,	0)	(3,	2)	(3,	0)	(1,	2)	(1,	0)	(0,	1)	
SUMMARY:	successors/goal	tests/states	generated/soluXon	
breadth_first_tree_search					<		25/		26/		37/(0,	>	
breadth_first_search															<			8/			9/		16/(0,	>	
depth_first_graph_search						<			5/			6/		12/(0,	>	
iteraXve_deepening_search		<		35/		61/		57/(0,	>	
astar_search																													<			8/		10/		16/(0,	>	
	

