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Uninformed Uninformed 
SearchSearch

Chapter 3

Some material adopted from notes 
by Charles R. Dyer, University of 

Wisconsin-Madison

Missionaries and Cannibals

8-Puzzle
Given an initial configuration of 8 numbered tiles on a 3x3 
board, move the tiles in such a way so as to produce a 
desired goal configuration of the tiles.

Building goal-based agents
To build a goal-based agent we need to answer the 

following questions:
– How do we represent the state of the ‘world’?
– What is the goal to be achieved?
– What are the actions?
– What relevant information should be encoded to describe 

the state of the world and the available transitions, and 
solve the problem? 

Initial
state

Goal
stateActions
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What is the goal to be achieved?
• Could describe a situation we want to achieve, a set of 

properties that we want to hold, etc. 
• Requires defining a “goal test” so that we know what it 

means to have achieved/satisfied our goal.
• This is a hard question that is rarely tackled in AI, usually 

assuming that the system designer or user will specify the 
goal to be achieved. 

• Certainly psychologists and motivational speakers always 
stress the importance of people establishing clear goals for 
themselves as the first step towards solving a problem. 

• What are your goals???

What are the actions?
• Characterize the primitive actions or events that are 

available for making changes in the world in order to 
achieve a goal. 

• Deterministic world: no uncertainty in an action’s effects. 
Given an action (a.k.a. operator or move) and a description 
of the current world state, the action completely specifies 
– whether that action can be applied to the current world 

(i.e., is it applicable and legal), and 
– what the exact state of the world will be after the action 

is performed in the current world (i.e., no need  for 
“history” information to compute what the new world 
looks like).

Representing actions
• Note also that actions in this framework can all be considered 

as discrete events that occur at an instant of time.
– For example, if “Mary is in class” and then performs the action “go 

home,” then in the next situation she is “at home.” There is no 
representation of a point in time where she is neither in class nor at 
home (i.e., in the state of “going home”).

• The number of actions / operators depends on the 
representation used in describing a state.
– In the 8-puzzle, we could specify 4 possible moves for each of the 8 

tiles, resulting in a total of 4*8=32 operators. 
– On the other hand, we could specify four moves for the “blank” square 

and we would only need 4 operators.

• Representational shift can greatly simplify a problem!

Representing states
• What information is necessary to encode about the world to 

sufficiently describe all relevant aspects to solving the goal? 
That is, what knowledge needs to be represented in a state 
description to adequately describe the current state or 
situation of the world?

• The size of a problem is usually described in terms of the 
number of states that are possible. 
– Tic-Tac-Toe has about 39 states. 
– Checkers has about 1040 states. 
– Rubik’s Cube has about 1019 states. 
– Chess has about 10120 states in a typical game.
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Closed World Assumption

• We will generally use the Closed World 
Assumption.

• All necessary information about a problem domain 
is available in each percept so that each state is a 
complete description of the world. 

• There is no incomplete information at any point in 
time.

Some example problems

• Toy problems and micro-worlds
– 8-Puzzle
– Missionaries and Cannibals
– Cryptarithmetic
– Remove 5 Sticks
– Water Jug Problem

• Real-world problems

8-Puzzle
Given an initial configuration of 8 numbered tiles on a 3x3 
board, move the tiles in such a way so as to produce a 
desired goal configuration of the tiles.

8 puzzle

• State: 3 x 3 array configuration of the tiles on the board. 
• Operators: Move Blank Square Left, Right, Up or Down. 

– This is a more efficient encoding of the operators than one in which 
each of four possible moves for each of the 8 distinct tiles is used.

• Initial State: A particular configuration of the board. 
• Goal: A particular configuration of the board.
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15 puzzle
• Popularized, but not 

invented by, Sam Loyd
• In the late 1800s he 

offered $1000 to all who 
could find a solution

• He sold many puzzles
• The states form two 

disjoint spaces
• From the initial 

configuration, there is no 
path to the solution

The 8-Queens Problem 

Place eight queens 
on a chessboard 
such that no 
queen attacks 
any other!

Missionaries and Cannibals
There are 3 missionaries, 3 cannibals, 

and 1 boat that can carry up to two 
people on one side of a river.

• Goal: Move all the missionaries and 
cannibals across the river. 

• Constraint: Missionaries can never be 
outnumbered by cannibals on either side 
of river, or else the missionaries are 
killed. 

• State: configuration of missionaries and 
cannibals and boat on each side of river. 

• Operators: Move boat containing some 
set of occupants across the river (in 
either direction) to the other side.

Missionaries and Cannibals Solution
Near side Far side

0 Initial setup:                   MMMCCC  B        -

1 Two cannibals cross over:        MMMC          B  CC

2 One comes back:                  MMMCC   B        C

3 Two cannibals go over again:     MMM           B  CCC

4 One comes back:                  MMMC    B        CC

5 Two missionaries cross:          MC            B  MMCC

6 A missionary & cannibal return:  MMCC    B        MC

7 Two missionaries cross again:    CC            B  MMMC

8 A cannibal returns:              CCC     B        MMM

9 Two cannibals cross:             C             B  MMMCC

10 One returns:                    CC      B        MMMC

11 And brings over the third:      - B  MMMCCC
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Cryptarithmetic
• Find an assignment of digits (0, ..., 9) to letters so that a 

given arithmetic expression is true.  examples: SEND + 
MORE = MONEY and

FORTY     Solution:  29786    

+  TEN                  850

+  TEN                  850

----- -----

SIXTY                31486

F=2, O=9, R=7, etc.

• Note: In this problem, the solution is NOT a sequence of 
actions that transforms the initial state into the goal state; 
rather, the solution is a goal node that includes an 
assignment of digits to each of the distinct letters in the 
given problem.

Remove 5 Sticks

• Given the following 
configuration of sticks, 
remove exactly 5 sticks in 
such a way that the 
remaining configuration 
forms exactly 3 squares. 

Water Jug Problem
Given a full 5-gallon jug 
and an empty 2-gallon 
jug, the goal is to fill the 
2-gallon jug with exactly 
one gallon of water.
– State = (x,y), where x 

is gallons of water in 
the 5G jug and y is 
gallons in the 2G 
gallon jug 

– Initial State = (5,0) 
– Goal State = (*,1), 

where * means any 
amount y < 2

x ≥ 2

x ≤ 3

–

–

Cond.

Pour partial 
5G into 2G

(1,y)→(0,y+1)5to2part

Pour 5G into 
2G

(x,0)→(x-2,2)5to2

Pour 2G into 
5G

(x,2)→(x+2,0)2to5

Empty 2G 
jug

(x,y)→(x,0)Empty2

Empty 5G 
jug

(x,y)→(0,y)Empty5

EffectTransitionName

Operator table
Some more real-world problems

• Route finding
• Touring (traveling salesman)
• Logistics
• VLSI layout
• Robot navigation
• Learning
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Knowledge representation issues

• What’s in a state ? 
– Is the boat color relevant to solving the Missionaries and Cannibals 

problem? Is sunspot activity relevant to predicting the stock market? 
What to represent is a very hard problem that is usually left to the 
system designer to specify. 

• What’s the best level of abstraction to describe the world.
– Too fine-grained and we’ll “miss the forest for the trees.” Too coarse-

grained and we’ll miss critical details for solving the problem.

• The number of states depends on the representation and level 
of abstraction chosen. E.g., for the Remove-5-Sticks 
– if we represent individual sticks, there are 17-choose-5 possible ways of 

removing 5 sticks. 
– If we represent the “squares” defined by 4 sticks, there are 6 squares 

initially and we must remove 3 squares, so only 6-choose-3 ways of 
removing 3 squares.

Formalizing search in a state space

• A state space is a graph (V, E) where V is a set of nodes
and E is a set of arcs, and each arc is directed from a node 
to another node

• Each node is a data structure that contains a state 
description plus other information such as the parent of the 
node, the name of the operator that generated the node from 
that parent, and other bookkeeping data

• Each arc corresponds to an instance of one of the operators. 
When the operator is applied to the state associated with the 
arc’s source node, then the resulting state is the state 
associated with the arc’s destination node

Formalizing search II
• Each arc has a fixed, positive cost associated with it 

corresponding to the cost of the operator.
• Each node has a set of successor nodes corresponding to all 

of the legal operators that can be applied at the source 
node’s state. 
– The process of expanding a node means to generate all of 

the successor nodes and add them and their associated 
arcs to the state-space graph

• One or more nodes are designated as start nodes.
• A goal test predicate is applied to a state to determine if its 

associated node is a goal node.

5, 2

3, 2

2, 2

1, 2

4, 2

0, 2

5, 1

3, 1

2, 1

1, 1

4, 1

0, 1

5, 0

3, 0

2, 0

1, 0

4, 0

0, 0

Empty2

Empty5

2to5

5to2

5to2part

Water jug state space
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5, 2

3, 2

2, 2

1, 2

4, 2

0, 2

5, 1

3, 1

2, 1

1, 1

4, 1

0, 1

5, 0

3, 0

2, 0

1, 0

4, 0

0, 0

Water jug solution

CLASS EXERCISE
• Representing a Sudoku puzzle as a search space

– What are the states?
– What are the operators?
– What are the constraints (on operator application)?
– What is the description of the goal state?

• Let’s try it!

2

3

1

3

Formalizing search III

• A solution is a sequence of operators that is associated with 
a path in a state space from a start node to a goal node.

• The cost of a solution is the sum of the arc costs on the 
solution path.
– If all arcs have the same (unit) cost, then the solution cost is just the 

length of the solution (number of steps / state transitions)

Formalizing search IV
• State-space search is the process of searching through a 

state space for a solution by making explicit a sufficient 
portion of an implicit state-space graph to find a goal node. 
– For large state spaces, it isn’t practical to represent the whole space.
– Initially V={S}, where S is the start node; when S is expanded, its 

successors are generated and those nodes are added to V and the 
associated arcs are added to E. This process continues until a goal 
node is found.

• Each node implicitly or explicitly represents a partial 
solution path (and cost of the partial solution path) from the 
start node to the given node. 
– In general, from this node there are many possible paths (and 

therefore solutions) that have this partial path as a prefix.
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State-space search algorithm
function general-search (problem, QUEUEING-FUNCTION)
;; problem describes the start state, operators, goal test, and operator costs
;; queueing-function is a comparator function that ranks two states
;; general-search returns either a goal node or failure
nodes = MAKE-QUEUE(MAKE-NODE(problem.INITIAL-STATE))
loop

if EMPTY(nodes) then return "failure"
node = REMOVE-FRONT(nodes)
if problem.GOAL-TEST(node.STATE) succeeds

then return node
nodes = QUEUEING-FUNCTION(nodes, EXPAND(node,

problem.OPERATORS))
end

;; Note: The goal test is NOT done when nodes are generated
;; Note: This algorithm does not detect loops

Key procedures to be defined

• EXPAND
– Generate all successor nodes of a given node

• GOAL-TEST
– Test if state satisfies all goal conditions

• QUEUEING-FUNCTION
– Used to maintain a ranked list of nodes that are 

candidates for expansion

Bookkeeping

• Typical node data structure includes:
– State at this node
– Parent node
– Operator applied to get to this node
– Depth of this node (number of operator applications 

since initial state)
– Cost of the path (sum of each operator application so far)

Some issues

• Search process constructs a search tree, where 
– root is the initial state and 
– leaf nodes are nodes

• not yet expanded (i.e., they are in the list “nodes”) or 
• having no successors (i.e., they’re “deadends” because no 

operators were applicable and yet they are not goals)

• Search tree may be infinite because of loops even if state 
space is small

• Return a path or a node depending on problem. 
– E.g., in cryptarithmetic return a node; in 8-puzzle return a path

• Changing definition of the QUEUEING-FUNCTION leads 
to different search strategies
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Evaluating search strategies

• Completeness
– Guarantees finding a solution whenever one exists

• Time complexity
– How long (worst or average case) does it take to find a solution? 

Usually measured in terms of the number of nodes expanded

• Space complexity
– How much space is used by the algorithm? Usually measured in 

terms of the maximum size of the “nodes” list during the search

• Optimality/Admissibility
– If a solution is found, is it guaranteed to be an optimal one? That is, 

is it the one with minimum cost?

Uninformed vs. informed search
• Uninformed search strategies

– Also known as “blind search,” uninformed search 
strategies use no information about the likely “direction” 
of the goal node(s) 

– Uninformed search methods: Breadth-first, depth-first, 
depth-limited, uniform-cost, depth-first iterative 
deepening, bidirectional

• Informed search strategies
– Aka “heuristic search,” informed search strategies use 

information about the domain to (try to) (usually) head in 
the general direction of the goal node(s)

– Informed search methods: Hill climbing, best-first, 
greedy search, beam search, A, A*

Example for illustrating uninformed search strategies

S

CBA

D GE

3 1 8

15 20 5
3
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Classic uninformed search methods

• The four  classic uninformed search methods are
– Breadth first search
– Depth first search
– Uniform cost search (a generalization of BFS)
– Iterative deepening (a blend of DFS and BFS)

• To which we can add another technique
– Bi-directional search (a hack on BFS)
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Breadth-First
• Enqueue nodes on nodes in FIFO (first-in, first-out) order. 
• Complete
• Optimal (i.e., admissible) if all operators have the same cost. Otherwise, not 

optimal but finds solution with shortest path length. 
• Exponential time and space complexity, O(bd), where d is the depth of the 

solution and b is the branching factor (i.e., number of children) at each node 
• Will take a long time to find solutions with a large number of steps because 

must look at all shorter length possibilities first 
– A complete search tree of depth d where each non-leaf node has b children, has a 

total of 1 + b + b2 + ... + bd = (b(d+1) - 1)/(b-1) nodes 
– For a complete search tree of depth 12, where nodes at depths 0..11 have 10 

children and nodes at depth 12 have 0, there are 1+10+100+1000...1012 = (1013-1)/9 
= O(1012) nodes in the complete search tree

– If BFS expands 1000 nodes/sec and each node uses 100 bytes of storage, then BFS 
will take 35 years to run in the worst case, and it will use 111 terabytes of memory!

Breadth-First Search
Expanded node  Nodes list

{ S0 }
S0 { A3 B1 C8 }
A3 { B1 C8 D6 E10 G18 }   
B1 { C8 D6 E10 G18 G21 }
C8 { D6 E10 G18 G21 G13 }         
D6 { E10 G18 G21 G13 }   
E10 { G18 G21 G13 }     
G18 { G21 G13 }

Solution path found is S A G , cost 18
Number of nodes expanded (including goal node) = 7

Depth-First (DFS)
• Enqueue nodes on nodes in LIFO (last-in, first-out) order. 

That is, nodes used as a stack data structure to order nodes. 
• May not terminate without a “depth bound,” i.e., cutting 

off search below a fixed depth D ( “depth-limited search”)
• Not complete (with or without cycle detection, and with or 

without a cutoff depth) 
• Exponential time, O(bd), but only linear space, O(bd)
• Can find long solutions quickly if lucky (and short 

solutions slowly if unlucky!)
• When search hits a deadend, can only back up one level at a 

time even if the “problem” occurs because of a bad operator 
choice near the top of the tree. Hence, only does 
“chronological backtracking”

Depth-First Search 

Expanded node  Nodes list
{ S0 }

S0 { A3 B1 C8 }
A3 { D6 E10 G18 B1 C8 }    
D6 { E10 G18 B1 C8 }
E10 { G18 B1 C8 }               
G18 { B1 C8 } 

Solution path found is S A G, cost 18
Number of nodes expanded (including goal node) = 5
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Uniform-Cost (UCS)
• Enqueue nodes by path cost. That is, let g(n) = cost of the 

path from the start node to the current node n. Sort nodes by 
increasing value of g. 

• Called “Dijkstra’s Algorithm” in the algorithms literature 
and similar to “Branch and Bound Algorithm” in operations 
research literature 

• Complete (*)
• Optimal/Admissible (*)

–Admissibility depends on the goal test being applied when a node is 
removed from the nodes list, not when its parent node is expanded 
and the node is first generated 

• Exponential time and space complexity, O(bd) 

Uniform-Cost Search 
Expanded node  Nodes list

{ S0 }
S0 { B1 A3 C8 }
B1 { A3 C8 G21 }
A3 { D6 C8 E10 G18 G21 }
D6 { C8 E10 G18 G1 }
C8 { E10 G13 G18 G21 }       
E10 { G13 G18 G21 }
G13 { G18 G21 }                             

Solution path found is S B G, cosst 13
Number of nodes expanded (including goal node) = 7

Depth-First Iterative Deepening (DFID)
• First do DFS to depth 0 (i.e., treat start node as having no 

successors), then, if no solution found, do DFS to depth 1, etc.
until solution found do

DFS with depth cutoff c
c = c+1

• Complete 
• Optimal/Admissible if all operators have the same cost. 

Otherwise, not optimal but guarantees finding solution of 
shortest length (like BFS). 

• Time complexity is a little worse than BFS or DFS because 
nodes near the top of the search tree are generated multiple 
times, but since almost all nodes are near the bottom of a tree,
the worst case time complexity is still exponential, O(bd) 

Depth-First Iterative Deepening

• If branching factor is b and solution is at depth d, then nodes 
at depth d are generated once, nodes at depth d-1 are generated 
twice, etc. 
– Hence bd + 2b(d-1) + ... + db <= bd / (1 - 1/b)2 = O(bd). 
– If b=4, then worst case is 1.78 * 4d, i.e., 78% more nodes 

searched than exist at depth d (in the worst case).
• Linear space complexity, O(bd), like DFS 
• Has advantage of BFS (i.e., completeness) and also 

advantages of DFS (i.e., limited space and finds longer paths 
more quickly) 

• Generally preferred for large state spaces where solution 
depth is unknown
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How they perform
• Depth-First Search:

– Expanded nodes: S A D E G 
– Solution found: S A G (cost 18)

• Breadth-First Search: 
– Expanded nodes: S A B C D E G 
– Solution found: S A G (cost 18)

• Uniform-Cost Search: 
– Expanded nodes: S A D B C E G 
– Solution found: S B G (cost 13)
This is the only uninformed search that worries about costs.

• Iterative-Deepening Search: 
– nodes expanded: S S A B C S A D E G 
– Solution found: S A G (cost 18)

Bi-directional search

• Alternate searching from the start state toward the goal and 
from the goal state toward the start.

• Stop when the frontiers intersect.
• Works well only when there are unique start and goal states.
• Requires the ability to generate “predecessor” states.
• Can (sometimes) lead to finding a solution more quickly.

Comparing Search Strategies Avoiding Repeated States 

• In increasing order of effectiveness in reducing size 
of state space and with increasing computational 
costs:
1. Do not return to the state you just came from. 
2. Do not create paths with cycles in them. 
3. Do not generate any state that was ever created 

before.
• Net effect depends on frequency of “loops” in state 

space. 
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A State Space that Generates an

Exponentially Growing  Search Space
Holy Grail Search

Expanded node  Nodes list
{ S0 }

S0 {C8 A3 B1 }
C8 { G13 A3 B1 }    
G13 { A3 B1 } 

Solution path found is S C G, cost 13 (optimal)
Number of nodes expanded (including goal node) = 3 

(as few as possible!)

If only we knew where we were headed…


