
Finding All Implied FD's

Motivation: Suppose we have a relation ABCD

with some FD's F . If we decide to decompose
ABCD into ABC and AD, what are the FD's for
ABC, AD?

� Example: F = AB ! C, C ! D, D ! A.
It looks like just AB ! C holds in ABC, but
in fact C ! A follows from F and applies to
relation ABC.

� Problem is exponential in worst case.

1

Algorithm

For each set of attributes X compute X+.

� Eliminate some \obvious" dependencies that
follow from others:

1. Trivial FD's: right side is a subset of left side.

✦ Consequence: no point in computing ;+

or closure of full set of attributes.

2. Eliminate XY ! Z if X ! Z holds.

✦ Consequence: If X+ is all attributes, then
there is no point in computing closure of
supersets of X.

3. Eliminate FD's whose right sides are not
single attributes.

2

Example

Example: F = AB ! C, C ! D, D ! A. What
FD's follow?

� A+ = A; B+ = B (nothing).

� C+ = ACD (add C ! A).

� D+ = AD (nothing new).

� (AB)+ = ABCD (add AB ! D; skip all
supersets of AB).

� (BC)+ = ABCD (nothing new; skip all
supersets of BC).

� (BD)+ = ABCD (add BD ! C; skip all
supersets of BD).

� (AC)+ = ACD; (AD)+ = AD; (CD)+ =
ACD (nothing new).

� (ACD)+ = ACD (nothing new).

� All other sets contain AB, BC, or BD, so
skip.

� Thus, the only interesting FD's that follow
from F are: C ! A, AB ! D, BD ! C.

3

Normalization

Goal = BCNF = Boyce-Codd Normal Form = all
FD's follow from the fact \key ! everything."

� Formally, R is in BCNF if every nontrivial FD
for R, say X ! A, has X a superkey.

Why?

1. Guarantees no redundancy due to FD's.

2. Guarantees no update anomalies = one
occurrence of a fact is updated, not all.

3. Guarantees no deletion anomalies = valid fact
is lost when tuple is deleted.

4

Example of Problems

Drinkers(name, addr, beersLiked, manf,

favoriteBeer)

name addr beersLiked manf favoriteBeer

Janeway Voyager Bud A.B. WickedAle
Janeway ??? WickedAle Pete's ???
Spock Enterprise Bud ??? Bud

FD's:

1. name ! addr

2. name ! favoriteBeer

3. beersLiked ! manf

� ???'s are redundant, since we can �gure them
out from the FD's.

� Update anomalies: If Janeway gets transferred
to the Intrepid, will we change addr in each of
her tuples?

� Deletion anomalies: If nobody likes Bud, we
lose track of Bud's manufacturer.

5

Each of the given FD's is a BCNF violation:

� Key = fname, beersLikedg

✦ Each of the given FD's has a left side a
proper subset of the key.

Another Example

Beers(name, manf, manfAddr).

� FD's = name ! manf, manf ! manfAddr.

� Only key is name.

✦ manf ! manfAddr violates BCNF with a
left side unrelated to any key.

6

Decomposition to Reach BCNF

Setting: relation R, given FD's F . Suppose
relation R has BCNF violation X ! A.

� Notice: we need only look among FD's of F ,
because any nontrivial FD that follows from
them must contain one of their left sides in its
left side.

✦ Thus, any FD that follows and has a non-
superkey as a left side means there is an
FD in F with the same property.

7

1. Expand right side to include X+.

✦ Cannot be all attributes | why?

2. Decompose R into X+ and (R �X+) [X.

XR

X+

3. Find the FD's for the decomposed relations.

✦ Project the FD's from F = calculate
all consequents of F that involve only
attributes from X+ or only from (R �
X+) [X.

8

Example

R = Drinkers(name, addr, beersLiked, manf,

favoriteBeer)

F =

1. name ! addr

2. name ! favoriteBeer

3. beersLiked ! manf

Pick BCNF violation name ! addr.

� Expand right side:

name ! addr favoriteBeer.

� Decomposed relations:

Drinkers1(name, addr, favoriteBeer)

Drinkers2(name, beersLiked, manf)

� Projected FD's (skipping a lot of work that
leads nowehere interesting):

✦ For Drinkers1: name ! addr and
name ! favoriteBeer.

✦ For Drinkers2: beersLiked ! manf.

9

� BCNF violations?

✦ For Drinkers1, name is key and all left
sides are superkeys.

✦ For Drinkers2, {name, beersLiked} is
the key, and beersLiked ! manf violates
BCNF.

Decompose Drinkers2

� Expand: nothing.

� Decompose:

Drinkers3(beersLiked, manf)

Drinkers4(name, beersLiked)

� Resulting relations are all in BCNF:

Drinkers1(name, addr, favoriteBeer)

Drinkers3(beersLiked, manf)

Drinkers4(name, beersLiked)

10

Why Decomposition \Works"?

What does it mean to \work"? Why can't we just
tear sets of attributes apart as we like?

� Answer: the decomposed relations need to
represent the same information as the original.

Projection and Join

� The operations that relate original and
decomposed relations.

� Suppose R is decomposed into S and T . We
project R onto S by:

1. Eliminate columns of R not in S.

2. Eliminate duplicate rows.

11

Example

R =

name addr beersLiked manf favoriteBeer

Janeway Voyager Bud A.B. WickedAle
Janeway Voyager WickedAle Pete's WickedAle
Spock Enterprise Bud A.B. Bud

12

� Project onto Drinkers1(name, addr,

favoriteBeer):

name addr favoriteBeer

Janeway Voyager WickedAle
Spock Enterprise Bud

� Project onto Drinkers3(beersLiked, manf):

beersLiked manf

Bud A.B.
WickedAle Pete's

� Project onto Drinkers4(name, beersLiked):

name beersLiked

Janeway Bud
Janeway WickedAle
Spock Bud

13

Reconstruction of Original

Can we �gure out the original relation from the
decomposed relations?

� Sometimes, if we (natural) join the relations.

� R ./ S:

✦ Schema = union of attributes of R and S.

✦ Tuples = all formed from a tuple r from
R and s from S that agree in all common
attributes.

Example

Drinkers3 ./ Drinkers4 =

name beersLiked manf

Janeway Bud A.B.
Janeway WickedAle Pete's
Spock Bud A.B.

� Join of above with Drinkers1 = original R.

14

Theorem

Suppose we decompose a relation with schema
XY Z into XY and XZ and project the relation
for XY Z onto XY and XZ. Then XY ./ XZ

is guaranteed to reconstruct XY Z if and only if
either X ! Y or X ! Z holds.

� Notice that whenever we decompose because
of a BCNF violation, one of these FD's must
hold.

Proof (if)

1. Anything you project comes back in the join.

✦ Doesn't depend on FD's.

t1 t2

Z X X Y

Z X Y

t

15

2. Anything that comes back in the join was in
the original XY Z.

Z X

Z X Y

X Y

r

t1 s2

t

s

� Notice that t1 and s2 agree on X.

� If X ! Y , then r = t.

� If X ! Z, then r = s.

� Either way, r is in original XY Z.

16

Proof (only-if)

If neither X ! Y nor X ! Z holds, then we can
�nd an example XY Z relation where the project-
join returns too much.

Z X Y

z1 x y1
z2 x y2

Z X

z1 x

z2 x

X Y

x y1
x y2

Z X Y

z1 x y1
z1 x y2
z2 x y1
z2 x y2

17

