Finding All Implied FD’s

Motivation: Suppose we have a relation ABC'D

with some FD’s F'. If we decide to decompose
ABCD into ABC and AD, what are the FD’s for
ABC, AD?

e Example: FF =AB —- C,C — D, D — A.
It looks like just AB — C' holds in ABC, but

in fact C' — A follows from F' and applies to
relation ABC.

e Problem is exponential in worst case.



Algorithm

For each set of attributes X compute X .

e Eliminate some “obvious” dependencies that
follow tfrom others:

1. Trivial FD’s: right side is a subset of left side.

[0 Consequence: no point in computing 0+
or closure of full set of attributes.

2. Eliminate XY — Z if X — Z holds.

[0 Consequence: If X is all attributes, then
there is no point in computing closure of
supersets of X.

3. Eliminate FD’s whose right sides are not
single attributes.



Example

Example: F = AB —- C,C — D, D — A. What
FD’s follow?

At = A; BT = B (nothing).
Ot = ACD (add C — A).
DT = AD (nothing new).

(AB)" = ABCD (add AB — D; skip all
supersets of AB).

(BC)T™ = ABCD (nothing new; skip all
supersets of BC').

(BD)tY = ABCD (add BD — C; skip all
supersets of BD).

(AC)t = ACD; (AD)T = AD; (CD)* =
ACD (nothing new).

(ACD)* = ACD (nothing new).

All other sets contain AB, BC, or BD, so
skip.

Thus, the only interesting FD’s that follow
from F are: C — A, AB— D, BD — C.



Normalization

Goal = BCNF = Boyce-Codd Normal Form = all
FD’s follow from the fact “key — everything.”

e Formally, R is in BCNF if every nontrivial FD
for R, say X — A, has X a superkey.

Why?
1. Guarantees no redundancy due to FD’s.

2. Guarantees no update anomalies = one
occurrence of a fact is updated, not all.

3. Guarantees no deletion anomalies = valid fact
is lost when tuple is deleted.



Example of Problems

Drinkers(name, addr, beersLiked, manf,

favoriteBeer)

name |addr beersLiked |mant |favoriteBeer
Janeway|Voyager |Bud A.B. |WickedAle
Janeway | 777 WickedAle |Pete’s| 777

Spock |Enterprise|Bud 7?7 |Bud

FD’s:

1. name — addr

2. name — favoriteBeer

3. DbeersLiked — manf

?77’s are redundant, since we can figure them
out from the FD’s.

Update anomalies: If Janeway gets transferred
to the Intrepid, will we change addr in each of

her tuples?

Deletion anomalies: If nobody likes Bud, we
lose track of Bud’s manufacturer.



Each of the given FD’s is a BCNF violation:
e Key = {name, beersLiked}

[1  Each of the given FD’s has a left side a
proper subset of the key.

Another Example

Beers (name, manf, manfAddr).
¢ FD’s = name — manf, manf — manfAddr.
e Only key is name.

[1 manf — manfAddr violates BCNF with a
left side unrelated to any key.



Decomposition to Reach BCNF

Setting: relation R, given FD’s F'. Suppose
relation R has BCNF violation X — A.

e Notice: we need only look among FD’s of F',
because any nontrivial FD that follows from
them must contain one of their left sides in its
left side.

[1 Thus, any FD that follows and has a non-
superkey as a left side means there is an
FD in F' with the same property.



1. Ezpand right side to include X ™.

[1  Cannot be all attributes — why?

2.  Decompose R into Xt and (R — X)) U X.

e

3. Find the FD’s for the decomposed relations.

[]

Project the FD’s from F' = calculate
all consequents of F' that involve only

attributes from X or only from (R —
Xt U X.



Example

R = Drinkers(name, addr, beersLiked, manf,
favoriteBeer)

F =
1. name — addr
2. name — favoriteBeer
3. beersLiked — manf
Pick BCNF violation name — addr.
e [Expand right side:
name — addr favoriteBeer.

e Decomposed relations:

Drinkersl (name, addr, favoriteBeer)
Drinkers2(name, beersLiked, manf)

e Projected FD’s (skipping a lot of work that
leads nowehere interesting):

[]  For Drinkersl: name — addr and
name — favoriteBeer.

[1  For Drinkers2: beersLiked — manf.



e BCNF violations?

[1 For Drinkers1, name is key and all left
sides are superkeys.

[1  For Drinkers2, {name, beersLiked} is

the key, and beersLiked — manf violates
BCNF.

Decompose Drinkers?

e [Expand: nothing.

e Decompose:

Drinkers3(beersLiked, manf)
Drinkers4 (name, beersLiked)

e Resulting relations are all in BCNF"

Drinkersl (name, addr, favoriteBeer)
Drinkers3(beersLiked, manf)
Drinkers4 (name, beersLiked)
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Why Decomposition “Works”?

What does it mean to “work””? Why can’t we just
tear sets of attributes apart as we like?

e Answer: the decomposed relations need to
represent the same information as the original.

Projection and Join

e The operations that relate original and
decomposed relations.

e Suppose R is decomposed into S and T'. We
project R onto S by:

1. Eliminate columns of R not in S.

2. Eliminate duplicate rows.
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Example

R =

name |addr beersLiked {mant |favoriteBeer
Janeway|Voyager |Bud A.B. |WickedAle
Janeway|Voyager |WickedAle|Pete’s|WickedAle
Spock |Enterprise|Bud A.B. |Bud
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Project onto Drinkers1 (name, addr,
favoriteBeer):

name addr favoriteBeer

Janeway|Voyager |WickedAle
Spock |Enterprise|Bud

Project onto Drinkers3(beersLiked, manf):

beersLiked | manf

Bud A.B.
WickedAle | Pete’s

Project onto Drinkers4 (name, beersLiked):

name beersLiked

Janeway | Bud
Janeway | WickedAle
Spock |Bud
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Reconstruction of Original

Can we figure out the original relation from the
decomposed relations?

e Sometimes, if we (natural) join the relations.
° R > S:
[J]  Schema = union of attributes of R and S.

[  Tuples = all formed from a tuple r from
R and s from S that agree in all common
attributes.

Example

Drinkers3 1 Drinkersd =

name beersLiked | manf
Janeway | Bud A.B.
Janeway | WickedAle | Pete’s
Spock Bud A.B.

e Join of above with Drinkersl = original R.
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Theorem

Suppose we decompose a relation with schema
XY Z into XY and XZ and project the relation
for XY Z onto XY and XZ. Then XY > XZ
is guaranteed to reconstruct XY Z if and only if
either X — Y or X — Z holds.

e Notice that whenever we decompose because
of a BCNF violation, one of these FD’s must
hold.

Proof (if)
1. Anything you project comes back in the join.

[1 Doesn’t depend on FD'’s.

A X Y
t
A X X Y
tl t2
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2. Anything that comes back in the join was in
the original XY Z.

e Notice that 1 and s, agree on X.
o If X —Y, thenr=1t.
o If X — Z thenr =s.
e Fither way, r is in original XY Z.

16



Proof (only-if)

If neither X — Y nor X — Z holds, then we can
find an example XY Z relation where the project-
join returns too much.

A X Y
z1 x yl
22 x Y2

A X

z1 x

22 x

X Y

x yl

x Y2
A X Y
z1 x yl
z1 x Y2
22 x yl
22 x Y2




