Finding All Implied FD’s

Motivation: Suppose we have a relation ABC'D

with some FD’s F'. If we decide to decompose
ABCD into ABC and AD, what are the FD’s for
ABC, AD?

e Example: FF =AB —- C,C — D, D — A.
It looks like just AB — C' holds in ABC, but

in fact C' — A follows from F' and applies to
relation ABC.

e Problem is exponential in worst case.

Algorithm

For each set of attributes X compute X .

e Eliminate some “obvious” dependencies that
follow tfrom others:

1. Trivial FD’s: right side is a subset of left side.

[0 Consequence: no point in computing 0+
or closure of full set of attributes.

2. Eliminate XY — Z if X — Z holds.

[0 Consequence: If X is all attributes, then
there is no point in computing closure of
supersets of X.

3. Eliminate FD’s whose right sides are not
single attributes.

Example

Example: F = AB —- C,C — D, D — A. What
FD’s follow?

At = A; BT = B (nothing).
Ot = ACD (add C — A).
DT = AD (nothing new).

(AB)" = ABCD (add AB — D; skip all
supersets of AB).

(BC)T™ = ABCD (nothing new; skip all
supersets of BC').

(BD)tY = ABCD (add BD — C; skip all
supersets of BD).

(AC)t = ACD; (AD)T = AD; (CD)* =
ACD (nothing new).

(ACD)* = ACD (nothing new).

All other sets contain AB, BC, or BD, so
skip.

Thus, the only interesting FD’s that follow
from F are: C — A, AB— D, BD — C.

Normalization

Goal = BCNF = Boyce-Codd Normal Form = all
FD’s follow from the fact “key — everything.”

e Formally, R is in BCNF if every nontrivial FD
for R, say X — A, has X a superkey.

Why?
1. Guarantees no redundancy due to FD’s.

2. Guarantees no update anomalies = one
occurrence of a fact is updated, not all.

3. Guarantees no deletion anomalies = valid fact
is lost when tuple is deleted.

Example of Problems

Drinkers(name, addr, beersLiked, manf,

favoriteBeer)

name |addr beersLiked |mant |favoriteBeer
Janeway|Voyager |Bud A.B. |WickedAle
Janeway | 777 WickedAle |Pete’s| 777

Spock |Enterprise|Bud 7?7 |Bud

FD’s:

1. name — addr

2. name — favoriteBeer

3. DbeersLiked — manf

?77’s are redundant, since we can figure them
out from the FD’s.

Update anomalies: If Janeway gets transferred
to the Intrepid, will we change addr in each of

her tuples?

Deletion anomalies: If nobody likes Bud, we
lose track of Bud’s manufacturer.

Each of the given FD’s is a BCNF violation:
e Key = {name, beersLiked}

[1 Each of the given FD’s has a left side a
proper subset of the key.

Another Example

Beers (name, manf, manfAddr).
¢ FD’s = name — manf, manf — manfAddr.
e Only key is name.

[1 manf — manfAddr violates BCNF with a
left side unrelated to any key.

Decomposition to Reach BCNF

Setting: relation R, given FD’s F'. Suppose
relation R has BCNF violation X — A.

e Notice: we need only look among FD’s of F',
because any nontrivial FD that follows from
them must contain one of their left sides in its
left side.

[1 Thus, any FD that follows and has a non-
superkey as a left side means there is an
FD in F' with the same property.

1. Ezpand right side to include X ™.

[1 Cannot be all attributes — why?

2. Decompose R into Xt and (R — X)) U X.

e

3. Find the FD’s for the decomposed relations.

[]

Project the FD’s from F' = calculate
all consequents of F' that involve only

attributes from X or only from (R —
Xt U X.

Example

R = Drinkers(name, addr, beersLiked, manf,
favoriteBeer)

F =
1. name — addr
2. name — favoriteBeer
3. beersLiked — manf
Pick BCNF violation name — addr.
e [Expand right side:
name — addr favoriteBeer.

e Decomposed relations:

Drinkersl (name, addr, favoriteBeer)
Drinkers2(name, beersLiked, manf)

e Projected FD’s (skipping a lot of work that
leads nowehere interesting):

[] For Drinkersl: name — addr and
name — favoriteBeer.

[1 For Drinkers2: beersLiked — manf.

e BCNF violations?

[1 For Drinkers1, name is key and all left
sides are superkeys.

[1 For Drinkers2, {name, beersLiked} is

the key, and beersLiked — manf violates
BCNF.

Decompose Drinkers?

e [Expand: nothing.

e Decompose:

Drinkers3(beersLiked, manf)
Drinkers4 (name, beersLiked)

e Resulting relations are all in BCNF"

Drinkersl (name, addr, favoriteBeer)
Drinkers3(beersLiked, manf)
Drinkers4 (name, beersLiked)

10

Why Decomposition “Works”?

What does it mean to “work””? Why can’t we just
tear sets of attributes apart as we like?

e Answer: the decomposed relations need to
represent the same information as the original.

Projection and Join

e The operations that relate original and
decomposed relations.

e Suppose R is decomposed into S and T'. We
project R onto S by:

1. Eliminate columns of R not in S.

2. Eliminate duplicate rows.

11

Example

R =

name |addr beersLiked {mant |favoriteBeer
Janeway|Voyager |Bud A.B. |WickedAle
Janeway|Voyager |WickedAle|Pete’s|WickedAle
Spock |Enterprise|Bud A.B. |Bud

12

Project onto Drinkers1 (name, addr,
favoriteBeer):

name addr favoriteBeer

Janeway|Voyager |WickedAle
Spock |Enterprise|Bud

Project onto Drinkers3(beersLiked, manf):

beersLiked | manf

Bud A.B.
WickedAle | Pete’s

Project onto Drinkers4 (name, beersLiked):

name beersLiked

Janeway | Bud
Janeway | WickedAle
Spock |Bud

13

Reconstruction of Original

Can we figure out the original relation from the
decomposed relations?

e Sometimes, if we (natural) join the relations.
° R > S:
[J] Schema = union of attributes of R and S.

[Tuples = all formed from a tuple r from
R and s from S that agree in all common
attributes.

Example

Drinkers3 1 Drinkersd =

name beersLiked | manf
Janeway | Bud A.B.
Janeway | WickedAle | Pete’s
Spock Bud A.B.

e Join of above with Drinkersl = original R.

14

Theorem

Suppose we decompose a relation with schema
XY Z into XY and XZ and project the relation
for XY Z onto XY and XZ. Then XY > XZ
is guaranteed to reconstruct XY Z if and only if
either X — Y or X — Z holds.

e Notice that whenever we decompose because
of a BCNF violation, one of these FD’s must
hold.

Proof (if)
1. Anything you project comes back in the join.

[1 Doesn’t depend on FD'’s.

A X Y
t
A X X Y
tl t2

15

2. Anything that comes back in the join was in
the original XY Z.

e Notice that 1 and s, agree on X.
o If X —Y, thenr=1t.
o If X — Z thenr =s.
e Fither way, r is in original XY Z.

16

Proof (only-if)

If neither X — Y nor X — Z holds, then we can
find an example XY Z relation where the project-
join returns too much.

A X Y
z1 x yl
22 x Y2

A X

z1 x

22 x

X Y

x yl

x Y2
A X Y
z1 x yl
z1 x Y2
22 x yl
22 x Y2

