Finding All Implied FD's

Motivation: Suppose we have a relation ABCDwith some FD's F. If we decide to decompose ABCD into ABC and AD, what are the FD's for ABC, AD?

- Example: $F = AB \rightarrow C, C \rightarrow D, D \rightarrow A$. It looks like just $AB \rightarrow C$ holds in ABC, but in fact $C \rightarrow A$ follows from F and applies to relation ABC.
- Problem is exponential in worst case.

Algorithm

For each set of attributes X compute X^+ .

- Eliminate some "obvious" dependencies that follow from others:
- 1. Trivial FD's: right side is a subset of left side.
 - Consequence: no point in computing \emptyset^+ or closure of full set of attributes.
- 2. Eliminate $XY \to Z$ if $X \to Z$ holds.
 - Consequence: If X^+ is all attributes, then there is no point in computing closure of supersets of X.
- 3. Eliminate FD's whose right sides are not single attributes.

Example

Example: $F = AB \rightarrow C, C \rightarrow D, D \rightarrow A$. What FD's follow?

• $A^+ = A; B^+ = B$ (nothing).

•
$$C^+ = ACD \text{ (add } C \to A\text{)}.$$

- $D^+ = AD$ (nothing new).
- $(AB)^+ = ABCD$ (add $AB \rightarrow D$; skip all supersets of AB).
- $(BC)^+ = ABCD$ (nothing new; skip all supersets of BC).
- $(BD)^+ = ABCD$ (add $BD \rightarrow C$; skip all supersets of BD).

•
$$(AC)^+ = ACD; (AD)^+ = AD; (CD)^+ = ACD$$
 (nothing new).

- $(ACD)^+ = ACD$ (nothing new).
- All other sets contain AB, BC, or BD, so skip.
- Thus, the only interesting FD's that follow from F are: $C \to A$, $AB \to D$, $BD \to C$.

Normalization

Goal = BCNF = Boyce-Codd Normal Form = all FD's follow from the fact "key \rightarrow everything."

• Formally, R is in BCNF if every nontrivial FD for R, say $X \to A$, has X a superkey.

Why?

- 1. Guarantees no redundancy due to FD's.
- 2. Guarantees no update anomalies = one occurrence of a fact is updated, not all.
- 3. Guarantees no deletion anomalies = valid fact is lost when tuple is deleted.

Example of Problems

Drinkers(name, addr, beersLiked, manf, favoriteBeer)

name	addr	beersLiked	manf	favoriteBeer
Janeway Janeway Spock	Voyager ??? Enterprise	WickedAle	Pete's	WickedAle ??? Bud

FD's:

- $1. \quad \texttt{name} \to \texttt{addr}$
- $2. \quad \texttt{name} \to \texttt{favoriteBeer}$
- $3. \quad \texttt{beersLiked} \to \texttt{manf}$
- ???'s are redundant, since we can figure them out from the FD's.
- Update anomalies: If Janeway gets transferred to the *Intrepid*, will we change addr in each of her tuples?
- Deletion anomalies: If nobody likes Bud, we lose track of Bud's manufacturer.

Each of the given FD's is a BCNF violation:

- Key = {name, beersLiked}
 - Each of the given FD's has a left side a proper subset of the key.

Another Example

Beers(name, manf, manfAddr).

- $FD's = name \rightarrow manf, manf \rightarrow manfAddr.$
- Only key is name.

Decomposition to Reach BCNF

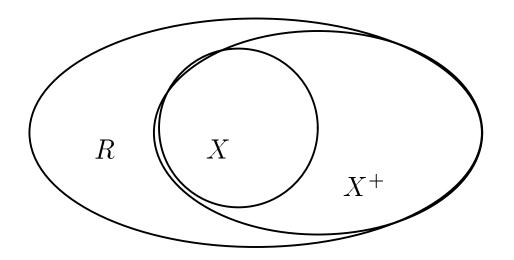
Setting: relation R, given FD's F. Suppose relation R has BCNF violation $X \to A$.

- Notice: we need only look among FD's of F, because any nontrivial FD that follows from them must contain one of their left sides in its left side.
 - \$
- Thus, any FD that follows and has a nonsuperkey as a left side means there is an FD in F with the same property.

1. Expand right side to include X^+ .

• Cannot be all attributes — why?

2. Decompose R into X^+ and $(R - X^+) \cup X$.



- 3. Find the FD's for the decomposed relations.
 - ◆ Project the FD's from F = calculate all consequents of F that involve only attributes from X^+ or only from $(R - X^+) \cup X$.

Example

R = Drinkers(name, addr, beersLiked, manf, favoriteBeer)

F =

- $1. \quad \texttt{name} \to \texttt{addr}$
- 2. name \rightarrow favoriteBeer
- $3. \quad \texttt{beersLiked} \to \texttt{manf}$

Pick BCNF violation name \rightarrow addr.

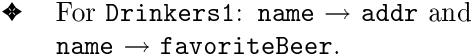
• Expand right side:

 $name \rightarrow addr favoriteBeer.$

• Decomposed relations:

Drinkers1(name, addr, favoriteBeer)
Drinkers2(name, beersLiked, manf)

• Projected FD's (skipping a lot of work that leads nowehere interesting):



For Drinkers2: beersLiked \rightarrow manf.

- BCNF violations?
 - For Drinkers1, name is key and all left sides are superkeys.
 - ✤ For Drinkers2, {name, beersLiked} is the key, and beersLiked → manf violates BCNF.

Decompose Drinkers2

- Expand: nothing.
- Decompose:

Drinkers3(beersLiked, manf)
Drinkers4(name, beersLiked)

• Resulting relations are all in BCNF:

Drinkers1(name, addr, favoriteBeer)
Drinkers3(beersLiked, manf)
Drinkers4(name, beersLiked)

Why Decomposition "Works"?

What does it mean to "work"? Why can't we just tear sets of attributes apart as we like?

• Answer: the decomposed relations need to represent the same information as the original.

Projection and Join

- The operations that relate original and decomposed relations.
- Suppose R is decomposed into S and T. We project R onto S by:
 - 1. Eliminate columns of R not in S.
 - 2. Eliminate duplicate rows.

Example

R =

name	addr	beersLiked	manf	favoriteBeer
Janeway Janeway Spock		WickedAle		

 Project onto Drinkers1(name, addr, favoriteBeer):

name	addr	favoriteBeer
Janeway Spock	Voyager Enterprise	$egin{array}{c} { m WickedAle} \\ { m Bud} \end{array}$

• Project onto Drinkers3(beersLiked, manf):

beersLiked	manf
Bud	A.B.
WickedAle	Pete's

• Project onto Drinkers4(name, beersLiked):

name	beersLiked
Janeway	Bud
Janeway	WickedAle
Spock	Bud

Reconstruction of Original

Can we figure out the original relation from the decomposed relations?

- Sometimes, if we (natural) *join* the relations.
- $R \bowtie S$:
 - Schema = union of attributes of R and S.
 - Tuples = all formed from a tuple r from R and s from S that agree in all common attributes.

Example

Drinkers3 ⋈ Drinkers4 =

name	beersLiked	manf
Janeway	Bud	A.B.
Janeway	WickedAle	Pete's
Spock	Bud	A.B.

• Join of above with Drinkers1 = original R.

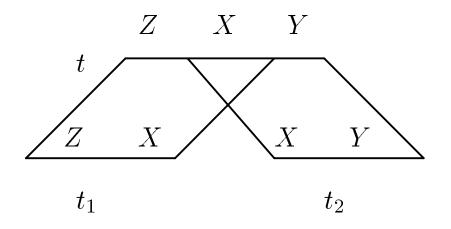
Theorem

Suppose we decompose a relation with schema XYZ into XY and XZ and project the relation for XYZ onto XY and XZ. Then $XY \bowtie XZ$ is guaranteed to reconstruct XYZ if and only if either $X \to Y$ or $X \to Z$ holds.

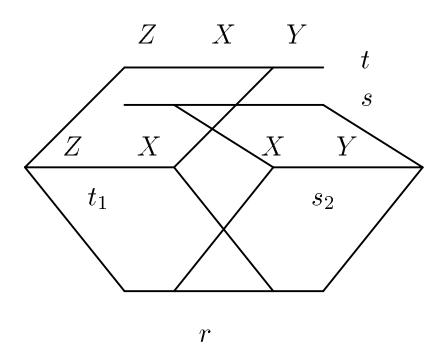
• Notice that whenever we decompose because of a BCNF violation, one of these FD's must hold.

Proof (if)

- 1. Anything you project comes back in the join.
 - $\bullet \quad \text{Doesn't depend on FD's.}$



2. Anything that comes back in the join was in the original XYZ.



- Notice that t_1 and s_2 agree on X.
- If $X \to Y$, then r = t.
- If $X \to Z$, then r = s.
- Either way, r is in original XYZ.

Proof (only-if)

If neither $X \to Y$ nor $X \to Z$ holds, then we can find an example XYZ relation where the projectjoin returns too much.

Z	X	Y
$egin{array}{c} z1 \ z2 \end{array}$	$x \\ x$	$\begin{array}{c c} y1\\ y2 \end{array}$
Z		X
	$\begin{array}{c c}1&a\\2&a\end{array}$	
	1	
$\frac{\lambda}{x}$		/ /1
x		2
Z	X	Y
$egin{array}{c} z1 \ z1 \end{array}$	$egin{array}{c} x \ x \ x \end{array}$	$\begin{array}{ c c } & y1 \\ & y2 \end{array}$
$\begin{array}{c} z \\ z \\ z \end{array}$	$egin{array}{c} x \ x \ x \end{array}$	$\begin{vmatrix} & y^2 \\ & y^1 \\ & y^2 \end{vmatrix}$
/• —		9-