Subclasses — Relations

Three approaches:

1.

ODL style: each object is in one class. Create
a relation for each class, with all the attributes
for that class.

[1 Don’t forget inherited attributes.

E/R style: an entity is in a network of classes
related by isa. Create one relation for each
E.S.; entities represented in all E.S. to which it
belongs.

[1 Relation has only the attributes attached
to that E.S. + key.

Use nulls. Create one relation for the root
class or root E.S., with all attributes found
anywhere in its network of subclasses.

[1 Put NULL in attributes not relevant to an
object /entity.

Example

Beers '

Ales

interface Beers (key name) {
attribute string name;
attribute string manf;

}

interfaceAles:Beers {
attribute string color;

ODL Style

name manf

Bud A.B.

Beers

name manf color

SummerBrew | Pete’s | dark

Ales
E/R Style
name manf
Bud A.B.
SummerBrew | Pete’s
Beers
name color

SummerBrew dark

Ales

Using Nulls

name manf color

Bud A.B. NULL

SummerBrew | Pete’s | dark
Beers

Design Challenge

Remember the problem with local and express
trains and local and express stations?

e Trains have numbers and engineers.

° Stations have names and addresses.

e There is a time for each train/station pair

where a stop occurs.

How would we best represent this information as

relations? Can we design the database schema so
it is impossible for an express train to have a stop
time for a local station? Should we?

Functional Dependencies

X — A = assertion about a relation R that
whenever two tuples agree on all the attributes of
X, then they must also agree on attribute A.

e Important as a constraint on the data that
may appear within a relation.

[1 Schema-level control of data.

e Mathematical tool for explaining the process
of “normalization” — vital for redesigning
database schemas when original design has
certain flaws.

Example

Drinkers(name, addr, beerslLiked, manf,
favoriteBeer)

name |addr beersLiked {mant |favoriteBeer
Janeway|Voyager |Bud A.B. |WickedAle
Janeway|Voyager |WickedAle|Pete’s|WickedAle
Spock |Enterprise|Bud A.B. |Bud

e Reasonable FD’s to assert:
1. name — addr

2. name — favoriteBeer

3. beersLiked — manf

e Note: These happen to imply the underlined
key, but the FD’s give more detail than the
mere assertion of a key.

e Key (in general) functionally determines all
attributes. In our example:

name beerslLiked — addr favoriteBeer beerManf

° Shorthand: combine FD’s with common left
side by concatenating their right sides.

e When FD’s are not of the form Key — other
attribute(s), then there is typically an attempt
to “cram” too much into one relation.

e Sometimes, several attributes jointly
determine another attribute, although neither
does by itself. Example:

beer bar — price

Formal Notion of Key
K is a key for relation R if:

1. K — all attributes of R.
2. For no proper subset of K is (1) true.
e If K satisfies only (1), then K is a superkey.

FD Conventions

e X, etc., represent sets of attributes; A etc.,
represent single attributes.

e No set formers in FD’s, e.g., ABC instead of
{A, B, C}.

Example

Drinkers(name, addr, beerslLiked, manf,
favoriteBeer)

{name, beersLiked} FD’s all attributes, as
seen.

[0 Shows {name, beersLiked} is a superkey.

name — beersLiked is false, so name not a
superkey.

beersLiked — name also false, so beersLiked
not a superkey.

Thus, {name, beersLiked} is a key.
No other keys in this example.

[1 Neither name nor beersLiked is on the
right of any observed FD, so they must be
part of any superkey.

Who Determines Keys/FD’s?

We could define a relation schema by simply
giving a single key K.

[1 Then the only FD’s asserted are that
K — A for every attribute A.

[1 No surprise: K is then the only key
for those FD’s, according to the formal
definition of “key.”

Or, we could assert some FD’s and deduce one
or more keys by the formal definition.

Example where > 1 key: employees with SS#
and employee ID.

Rule of thumb: FD’s either come from keyness
or from physics.

[E.g., “no two courses can meet in the
same room at the same time” yields
room time — course.

10

Inferring FD’s

And this is important because . . .

e When we talk about improving relational
designs, we often need to ask “does this FD
hold in this relation?”

Given FD’s X1 — Al, X2 — A2---Xn — An,
does FD Y — B necessarily hold in the same
relation?

e Start by assuming two tuples agree in Y. Use
given FD’s to infer other attributes on which
they must agree. If B is among them, then
yes, else no.

11

Algorithm
Define Y = closure of Y:

e DBasis: YT =Y.

e Induction: If X C Y™, and X — A is a given
FD, then add A to Y.

e End when Y cannot be changed. Then Y
functionally determines all members of YT,
and no other attributes.

12

Example

A— B, BC — D.

A+ = AB.
c+=cC.
(AC)* = ABCD.

Thus, AC is a key.

13

Inference Rules

Some useful tricks that help us infer FD’s without
resorting to the closure algorithm.

e But each is proved using the closure
algorithm.

Armstrong’s Axioms
1. Reflexivity: f Y C X, then X — Y.
2. Augmentation: It X — Y, then XZ —- Y Z.

3. Transitivity: f X — Y and Y — Z, then
X — Z.

14

Why?

e Reflexivity obvious from closure test.

e Augmentation:

e Transitivity:

15

Example

Prove A — B and BC — D imply AC — D.

1. A — B (given).

2. AC — BC (augmentation).

3. BC — D (given).

4. AC — D (transitivity using 2 and 3).
Example

A— Band A — C imply A — BC.

1.

2
3
1.
5

A — B (given).

A — AB (augmentation using A).

A — C (given).

AB — BC (augmentation).

A — BC (transitivity using 2 and 4).

16

