
Subclasses ! Relations

Three approaches:

1. ODL style: each object is in one class. Create
a relation for each class, with all the attributes
for that class.

✦ Don't forget inherited attributes.

2. E/R style: an entity is in a network of classes
related by isa. Create one relation for each
E.S.; entities represented in all E.S. to which it
belongs.

✦ Relation has only the attributes attached
to that E.S. + key.

3. Use nulls. Create one relation for the root
class or root E.S., with all attributes found
anywhere in its network of subclasses.

✦ Put NULL in attributes not relevant to an
object/entity.

1



Example

isa

Beers

Ales

manf

color

name

interface Beers (key name) {

attribute string name;

attribute string manf;

}

interfaceAles:Beers {

attribute string color;

}

2



ODL Style

name manf

Bud A.B.

Beers

name manf color

SummerBrew Pete's dark

Ales

E/R Style

name manf

Bud A.B.

SummerBrew Pete's

Beers

name color

SummerBrew dark

Ales

3



Using Nulls

name manf color

Bud A.B. NULL

SummerBrew Pete's dark

Beers

Design Challenge

Remember the problem with local and express
trains and local and express stations?

� Trains have numbers and engineers.

� Stations have names and addresses.

� There is a time for each train/station pair
where a stop occurs.

How would we best represent this information as
relations? Can we design the database schema so
it is impossible for an express train to have a stop
time for a local station? Should we?

4



Functional Dependencies

X ! A = assertion about a relation R that
whenever two tuples agree on all the attributes of
X, then they must also agree on attribute A.

� Important as a constraint on the data that
may appear within a relation.

✦ Schema-level control of data.

� Mathematical tool for explaining the process
of \normalization" | vital for redesigning
database schemas when original design has
certain 
aws.

5



Example

Drinkers(name, addr, beersLiked, manf,

favoriteBeer)

name addr beersLiked manf favoriteBeer

Janeway Voyager Bud A.B. WickedAle
Janeway Voyager WickedAle Pete's WickedAle
Spock Enterprise Bud A.B. Bud

� Reasonable FD's to assert:

1. name ! addr

2. name ! favoriteBeer

3. beersLiked ! manf

� Note: These happen to imply the underlined
key, but the FD's give more detail than the
mere assertion of a key.

6



� Key (in general) functionally determines all
attributes. In our example:

name beersLiked ! addr favoriteBeer beerManf

� Shorthand: combine FD's with common left
side by concatenating their right sides.

� When FD's are not of the form Key ! other
attribute(s), then there is typically an attempt
to \cram" too much into one relation.

� Sometimes, several attributes jointly
determine another attribute, although neither
does by itself. Example:

beer bar ! price

7



Formal Notion of Key

K is a key for relation R if:

1. K ! all attributes of R.

2. For no proper subset of K is (1) true.

� If K satis�es only (1), then K is a superkey.

FD Conventions

� X, etc., represent sets of attributes; A etc.,
represent single attributes.

� No set formers in FD's, e.g., ABC instead of
fA;B;Cg.

8



Example

Drinkers(name, addr, beersLiked, manf,

favoriteBeer)

� fname, beersLikedg FD's all attributes, as
seen.

✦ Shows fname, beersLikedg is a superkey.

� name ! beersLiked is false, so name not a
superkey.

� beersLiked ! name also false, so beersLiked

not a superkey.

� Thus, fname, beersLikedg is a key.

� No other keys in this example.

✦ Neither name nor beersLiked is on the
right of any observed FD, so they must be
part of any superkey.

9



Who Determines Keys/FD's?

� We could de�ne a relation schema by simply
giving a single key K.

✦ Then the only FD's asserted are that
K ! A for every attribute A.

✦ No surprise: K is then the only key
for those FD's, according to the formal
de�nition of \key."

� Or, we could assert some FD's and deduce one
or more keys by the formal de�nition.

� Example where > 1 key: employees with SS#
and employee ID.

� Rule of thumb: FD's either come from keyness
or from physics.

✦ E.g., \no two courses can meet in the
same room at the same time" yields
room time ! course.

10



Inferring FD's

And this is important because . . .

� When we talk about improving relational
designs, we often need to ask \does this FD
hold in this relation?"

Given FD's X1 ! A1, X2 ! A2 � � �Xn ! An,
does FD Y ! B necessarily hold in the same
relation?

� Start by assuming two tuples agree in Y . Use
given FD's to infer other attributes on which
they must agree. If B is among them, then
yes, else no.

11



Algorithm

De�ne Y + = closure of Y :

� Basis: Y + = Y .

� Induction: If X � Y +, and X ! A is a given
FD, then add A to Y +.

X
A

Y + new Y +

� End when Y + cannot be changed. Then Y
functionally determines all members of Y +,
and no other attributes.

12



Example

A! B, BC ! D.

� A+ = AB.

� C+ = C.

� (AC)+ = ABCD.

A

C

B

D

� Thus, AC is a key.

13



Inference Rules

Some useful tricks that help us infer FD's without
resorting to the closure algorithm.

� But each is proved using the closure
algorithm.

Armstrong's Axioms

1. Re
exivity : If Y � X, then X ! Y .

2. Augmentation: If X ! Y , then XZ ! Y Z.

3. Transitivity : If X ! Y and Y ! Z, then
X ! Z.

14



Why?

� Re
exivity obvious from closure test.

� Augmentation:

X

Z

Y

� Transitivity:

X Y Z

15



Example

Prove A! B and BC ! D imply AC ! D.

1. A! B (given).

2. AC ! BC (augmentation).

3. BC ! D (given).

4. AC ! D (transitivity using 2 and 3).

Example

A! B and A! C imply A! BC.

1. A! B (given).

2. A! AB (augmentation using A).

3. A! C (given).

4. AB ! BC (augmentation).

5. A! BC (transitivity using 2 and 4).

16


