
Relational Model

� Table = relation.

� Column headers = attributes.

� Row = tuple

name manf

WinterBrew Pete's
BudLite A.B.
� � � � � �

Beers

� Relation schema = name(attributes).
Example: Beers(name, manf).

✦ Order of attributes is arbitrary, but in
practice we need to assume the order
given in the relation schema.

✦ Relation instance is current set of rows for
a relation schema.

� Database schema = collection of relation
schemas.

1



Keys in Relations

An attribute or set of attributes K is a key for a
relation R if we expect that in no instance of R
will two di�erent tuples agree on all the attributes
of K.

� Indicate a key by underlining the key
attributes.

� Example: If name is a key for Beers:

Beers(name, manf)

2



Why Relations?

� Very simple model.

� Often a good match for the way we think
about our data.

� Abstract model that underlies SQL, the most
important language in DBMS's today.

✦ And even inuential in competitors like
OQL.

3



Abstract Vs. Concrete Relations

The relational model implemented in SQL di�ers
slightly from the abstract notion of relations that
we shall learn �rst.

� Big di�erence: abstract relations are sets of
tuples; SQL relations are bags of tuples (i.e.,
duplicates allowed).

� Abstract relations vital for foundation:

✦ Semantics of SQL statements.

✦ Formal meaning of functional
dependencies, normalization.

4



Relational Design

� Relations are closer to real storage structures
than the concepts of E/R or ODL.

✦ Thus, going from E/R or ODL designs to
relational often requires some additional
intellectual input.

Easiest Case: Entity Set ! Relation

E. S. attributes become relational attributes.

name manf

Beers

Becomes:

Beers(name, manf)

5



Slightly Harder: ODL Class Without
Relationships

� Problem: ODL allows attribute types build
from structures and collection types.

� Structure: Make one attribute for each �eld.

� Set: make one tuple for each member of the
set.

✦ More than one set attribute? Make tuples
for all combinations.

� Problem: ODL class may have no key, but we
should have one in the relation to represent
\OID."

6



Example

interface Drinkers (key name) {

attribute string name;

attribute Struct Addr

{string street, string city,

int zip} address;

attribute Set<string> phone;

}

name street city zip phone

n1 s1 c1 z1 p1
n1 s1 c1 z1 p2

� Surprise: the key for the class (name) is not
the key for the relation (name, phone).

✦ name in the class determines a unique
object, including a unique set of phones.

✦ name in the relation does not determine a
unique tuple.

✦ Since tuples are not identical to objects,
there is no inconsistency!

7



Decompose Relations?

One option is to get phone into a separate relation
(with name). The database would look like:

name street city zip

n1 s1 c1 z1

name phone

n1 p1
n1 p2

� Advantages:

1. Avoids redundancy in address
components.

2. Handles the case where someone has no
phone.

� Disadvantage: Harder to answer queries that
jump between two relations, e.g., \in what city
is phone 650-725-4802?"

8



A Design Problem

interface Family {

attribute Set<string> parents;

attribute Set<string> children;

}

1. What is the key?

2. How should we represent a family with two
parents and three children?

3. Would you favor decomposition into several
relations?

9



E/R Relationships ! Relations

Relation has attribute for key attributes of each
E.S. that participates in the relationship.

� Key of relation excludes attributes from the
\one" side if relationship is many-one.

� For a one-one relationship, choose which side
provides the key of the relation.

� Renaming attributes OK.

✦ Essential if multiple roles for an E.S.

10



namename

Drinkers Likes Beers

manf

addr

Favorite
Buddies

Married

1 2

husband wife

Likes(drinker, beer)
Favorite(drinker, beer)
Married(husband, wife)
Buddies(name1, name2)

� For one-one relation Married, we can choose
either husband or wife as key.

11



Weak Entity Sets, Relationships ! Relations

@Logins Hosts

name name

Hosts(hostName)
Logins(loginName, hostName)
At(loginName, hostName, hostName2)

� In At, hostName and hostName2 must be the
same host, so delete one of them.

� Then, Logins and At become the same
relation; delete one of them.

� In this case, Hosts' schema is a subset of
Logins' schema. Delete Hosts?

� General rule: Delete the relation that comes
from a many-one relationship supporting a
weak entity set.

12



ODL Relationships

Pick one direction, say A! B.

� Put key of B attributes in the relation for
class A.

� Prefer to make A the \many," if relationship is
many-one.

� If relationship is many-many, we'll have to
duplicate A-tuples as in E/R.

13



Example

interface Drinkers {

attribute string name;

attribute string addr;

relationship Set<Beers> likes

inverse Beers::fans;

relationship Beers favorite

inverse Beers::realFans;

relationship Drinkers husband

inverse wife;

relationship Drinkers wife

inverse husband;

relationship Set<Drinkers> buddies

inverse buddies;

}

Drinkers(name, addr, wifeName, buddyName,
beerName, favoriteBeer)

14


