Design Principles

Setting: client has (possibly vague) idea of what
he/she wants. You must design a database that
represents these thoughts and only these thoughts.

e Avoid redundancy.

[1 Wastes space and encourages
inconsistency.

e KISS = keep it simple, students.
[1 Avoid intermediate concepts.
e Faithfulness to requirements.

[1 Remember the design schema should
enforce as many constraints as possible.
Don’t rely on future data to follow
assumptions.

[1 Example: If registrar wants to associate
only one instructor with a course, don’t
allow sets of instructors and count on
departments to enter only one instructor
per course.

Example

Good:
Beers | - Manfs

Bad (redundancy): repeats manufacturer address
for each beer they manufacture.

Beers

manf

addr

Bad (needless intermediate):

name name

Beers | - Manfs

e Question: Why is it OK to have Beers with
just its key as attribute? Why not make set of
beers an attribute of manufacturers?

[0 Questionable in E/R, but clearly legal in
ODL:

interface Manfs (key name) {
attribute string name;
attribute string addr;
attribute Set<string> beersManfed;

A Design Problem

We wish to design a database representing cities,
counties, and states in the US.

3

For states, we wish to record the name,
population, and state capital (which is a city).

For counties, we wish to record the name,
the population, and the state in which it is
located.

For cities, we wish to record the name, the
population, the state in which it is located and
the county or counties in which it is located.

Uniqueness assumptions:

[]
[]

Names of states are unique.

Names of counties are only unique within
a state (e.g., 26 states have Washington
Counties).

Cities are likewise unique only within
a state (e.g., there are 24 Springfields
among the 50 states).

Some counties and cities have the same
name, even within a state (example: San
Francisco).

Almost all cities are located within a
single county, but some (e.g., New York
City) extend over several counties.

Another Design Problem

We wish to design a database consistent with the
following facts.

e Trains are either local trains or express trains,
but never both.

e A train has a unique number and an engineer.

e Stations are either express stops or local stops,
but never both.

e A station has a name (assumed unique) and
an address.

e All local trains stop at all stations.
e Express trains stop only at express stations.

e For each train and each station the train stops
at, there is a time.

Strawman: What’s Wrong With This?

Trains | Stations

In the Begining . . .

(Historical data models: Network and Hierarchical)

The mid 1960’s saw the first systems that used
secondary storage for querying = retrieval by
value, not by file name.

Big difterence: secondary storage model of
data = data in blocks/pages, and major cost
is retrieving or storing a block.

Unsolved problem: Storing many-many
relationships so they can be traversed
efficiently in both directions.

[1 Easy in RAM model: linked lists of
successors, predecessors, e.g.

[1 Many-one is easy in secondary-storage
model, e.g., store each beer following its
manufacturer, so “find the Anheuser-
Busch beers” can be answered by
retrieving them all on one or a few blocks.

A.B. | BudLite

Bud | Michelob

8

Network Model

Essentially entity sets and binary, many-one
relationships.

e Replace a many-many relationship by
a connecting E.S. and two many-one
relationships.

e Entity set — Logical Record Type (LRT).
e Many-one relationship — Link.

[Terminology useful to this day: owner =
one, member = many, e.g., a manufacturer
record “owns” beer records.

@(name,mamf)

TheBeer

TheBar

@name,addr)
9

Hierarchical Model

Used in major early DBMS’s, including IBM’s
IMS, which is still supported today.

e Network model, restricted to a forest, where
owners are parents of children.

e Adds Virtual LRT to handle many-many

relationships.

[1 Think of V. LRT as representing pointers.

Bars
V.Beers V.Drinkers
Beers Drinkers
/
V.Bars |[V.Drinkers V.Beers || V.Bars

10

Typical Bar Record

Joe’sBar
Pointers Pointers
to Beer to Drinker
records records

e No help in secondary storage model when
going from a bar to either its beers or its
drinkers.

11

Example Where Hierarchical Model Wins

Projects

e Typical stored records make efficient
queries that go Dept — Budget Item or
Project — Employees.

Budget
1tems

Deptl | Projl| E11 | E12

E13 | Proj2| E21| E22| BI1

BI2 | BI3

12

