
Design Principles

Setting: client has (possibly vague) idea of what
he/she wants. You must design a database that
represents these thoughts and only these thoughts.

� Avoid redundancy.

✦ Wastes space and encourages
inconsistency.

� KISS = keep it simple, students.

✦ Avoid intermediate concepts.

� Faithfulness to requirements.

✦ Remember the design schema should
enforce as many constraints as possible.
Don't rely on future data to follow
assumptions.

✦ Example: If registrar wants to associate
only one instructor with a course, don't
allow sets of instructors and count on
departments to enter only one instructor
per course.

1



Example

Good:

Beers ManfsManfBy

name name addr

Bad (redundancy): repeats manufacturer address
for each beer they manufacture.

name

Beers

manf

manf
addr

2



Bad (needless intermediate):

name

Beers ManfsManfBy

name

� Question: Why is it OK to have Beers with
just its key as attribute? Why not make set of
beers an attribute of manufacturers?

✦ Questionable in E/R, but clearly legal in
ODL:

interface Manfs (key name) {

attribute string name;

attribute string addr;

attribute Set<string> beersManfed;

}

A Design Problem

We wish to design a database representing cities,
counties, and states in the US.

3



� For states, we wish to record the name,
population, and state capital (which is a city).

� For counties, we wish to record the name,
the population, and the state in which it is
located.

� For cities, we wish to record the name, the
population, the state in which it is located and
the county or counties in which it is located.

4



� Uniqueness assumptions:

✦ Names of states are unique.

✦ Names of counties are only unique within
a state (e.g., 26 states have Washington
Counties).

✦ Cities are likewise unique only within
a state (e.g., there are 24 Spring�elds
among the 50 states).

✦ Some counties and cities have the same
name, even within a state (example: San
Francisco).

✦ Almost all cities are located within a
single county, but some (e.g., New York
City) extend over several counties.

5



Another Design Problem

We wish to design a database consistent with the
following facts.

� Trains are either local trains or express trains,
but never both.

� A train has a unique number and an engineer.

� Stations are either express stops or local stops,
but never both.

� A station has a name (assumed unique) and
an address.

� All local trains stop at all stations.

� Express trains stop only at express stations.

� For each train and each station the train stops
at, there is a time.

6



Strawman: What's Wrong With This?

type

type

name addr

StationsStopsAtTrains

number

time
engineer

7



In the Begining . . .

(Historical data models: Network and Hierarchical)

� The mid 1960's saw the �rst systems that used
secondary storage for querying = retrieval by
value, not by �le name.

� Big di�erence: secondary storage model of

data = data in blocks/pages, and major cost
is retrieving or storing a block.

� Unsolved problem: Storing many-many
relationships so they can be traversed
e�ciently in both directions.

✦ Easy in RAM model: linked lists of
successors, predecessors, e.g.

✦ Many-one is easy in secondary-storage
model, e.g., store each beer following its
manufacturer, so \�nd the Anheuser-
Busch beers" can be answered by
retrieving them all on one or a few blocks.

A.B. BudLite

Bud Michelob

...

...

8



Network Model

Essentially entity sets and binary, many-one
relationships.

� Replace a many-many relationship by
a connecting E.S. and two many-one
relationships.

� Entity set ! Logical Record Type (LRT).

� Many-one relationship ! Link.

✦ Terminology useful to this day: owner =
one, member = many, e.g., a manufacturer
record \owns" beer records.

Beers(name,manf)

Bars(name,addr)

BB(price)

TheBeer

TheBar

9



Hierarchical Model

Used in major early DBMS's, including IBM's
IMS, which is still supported today.

� Network model, restricted to a forest, where
owners are parents of children.

� Adds Virtual LRT to handle many-many
relationships.

✦ Think of V. LRT as representing pointers.

V.Beers V.Drinkers

Bars

Beers Drinkers

V.Bars V.Beers V.BarsV.Drinkers

10



Typical Bar Record

Joe'sBar

Pointers Pointers
to Beer
records

to Drinker
records

� No help in secondary storage model when
going from a bar to either its beers or its
drinkers.

11



Example Where Hierarchical Model Wins

Depts

Employees

Budget
items

Projects

� Typical stored records make e�cient
queries that go Dept ! Budget Item or
Project ! Employees.

Proj2

Dept1 Proj1 E11 E12

E13 E21 E22 BI1

BI2 BI3

12


