
Objects in SQL3

OQL extends C++ with database concepts, while
SQL3 extends SQL with OO concepts.

� Personal opinion: the relation is so

fundamental to data manipulation that
retaining it as the core, as SQL3 does, is
\right."

✦ Systems using the SQL3 philosophy are
called object-relational.

✦ All the major relational vendors have
something of this kind, allowing any class
to become the type of a column.

Informix Data Blades
Oracle Cartridges
Sybase Plug-Ins
IBM/DB2 Extenders

1



Two Levels of SQL3 Objects

1. For tuples of relations = \row types."

2. For columns of relations = \types."

✦ But row types can also be used as column
types.

References

Row types can have references.

� If T is a row type, then REF(T) is the type of
a reference to a T object.

� Unlike OO systems, refs are values that can be
seen by queries.

2



Example of Row Types

CREATE ROW TYPE BarType (

name CHAR(20) UNIQUE,

addr CHAR(20)

);

CREATE ROW TYPE BeerType (

name CHAR(20) UNIQUE,

manf CHAR(20)

);

CREATE ROW TYPE MenuType (

bar REF(BarType),

beer REF(BeerType),

price FLOAT

);

3



Creating Tables

Row-type declarations do not create tables.

� They are used in place of element lists in
CREATE TABLE statements.

Example

CREATE TABLE Bars OF TYPE BarType

CREATE TABLE Beers OF TYPE BeerType

CREATE TABLE Sells OF TYPE MenuType

4



Dereferencing

A ! B = the B attribute of the object referred to
by reference A.

Example

Find the beers served by Joe.

SELECT beer -> name

FROM Sells

WHERE bar -> name = 'Joe''s Bar';

5



OID's as Values

A row type can have a reference to itself.

� Serves as the OID for tuples of that type.

Example

CREATE ROW TYPE BarType (

name CHAR(20),

addr CHAR(20),

barID REF(BarType)

);

CREATE TABLE Bars OF TYPE BarType

VALUES FOR barID ARE SYSTEM

GENERATED

� VALUES... clause forces the barID of each
tuple to refer to the tuple itself.

name addr barID

Joe's Maple St.

6



Example: Using References as Values

Find the menu at Joe's.

SELECT Sells.beer->name, Sells.price

FROM Bars, Sells

WHERE Bars.name = 'Joe''s Bar' AND

Bars.barID = Sells.bar;

7



ADT's in SQL3

Allows a column of a relation to have a type that
is a \class," including methods.

� Intended application: data that doesn't �t
relational model well, e.g., locations, signals,
images, etc.

� The type itself is usually a multi-attribute
tuple.

� Type declaration:

CREATE TYPE <name> (
attributes
method declarations or de�nitions

);

� Methods de�ned in a PL/SQL-like language.

8



Example

CREATE TYPE BeerADT (

name CHAR(20),

manf CHAR(20),

FUNCTION newBeer(

:n CHAR(20),

:m CHAR(20)

)

RETURNS BeerADT;

:b BeerADT; /* local decl. */

BEGIN

:b := BeerADT(); /* built-in

constructor */

:b.name := :n;

:b.manf := :m;

RETURN :b;

END;

FUNCTION getMinPrice(:b BeerADT)

RETURNS FLOAT;

);

� getMinPrice is declaration only; newBeer is
de�nition.

9



� getMinPrice must be de�ned somewhere
where relation Sells is available.

FUNCTION getMinPrice(:b BeerADT)

RETURNS FLOAT;

:p FLOAT;

BEGIN

SELECT MIN(price) INTO :p

FROM Sells

WHERE beer->name = :b.name;

RETURN :p;

END;

10



Built-In Comparison Functions

We can de�ne for each ADT two functions EQUAL
and LESSTHAN that allow values of this ADT to
participate in WHERE clauses involving =, <=, etc.

Example: A \Point" ADT

CREATE TYPE Point (

x FLOAT,

y FLOAT,

FUNCTION EQUALS(

:p Point,

:q Point

)

RETURNS BOOLEAN;

BEGIN

IF :p.x = :q.x AND

:p.y = :q.y THEN

RETURN TRUE

ELSE

RETURN FALSE;

END;

11



FUNCTION LESSTHAN(

:p Point,

:q Point

)

RETURNS BOOLEAN;

BEGIN

IF :p.x > :q.x THEN

RETURN FALSE

ELSIF :p.x < :q.x THEN

IF :p.y <= :q.y THEN

RETURN TRUE

ELSE RETURN FALSE

ELSE /* :p.x = :q.x

IF :p.y < :q.y THEN

RETURN TRUE

ELSE RETURN FALSE

END;

);

12



Using the Comparison Functions

Here is a query that computes the lower convex
hull of a set of points.

� Assumes MyPoints(p) is a relation with a
single column p of type Point.

SELECT p

FROM MyPoints

WHERE NOT p > ANY MyPoints;

13


