
ODL

� Design language derived from the OO
community:

CORBA

ODMG

ODL OQL

(design)

ODL
relational design

OODBMS input

(queries)

� Can be used like E/R as a preliminary design
for a relational DB.

� It can also be direct input to some
OODBMS's.

1



ODL Class Declarations

interface <name> {

elements = attributes, relationships,
methods

}

Element Declarations

attribute <type> <name>;
relationship <rangetype> <name>;

Method Example

float gpa(in: Student) raises(noGrades)

� float = return type.

� in: indicates Student argument is read-only.

✦ Other options: out, inout.

� noGrades is an exception that can be raised
by method gpa.

2



Beers-Bars-Drinkers Example

� Our running example for the course.

FrequentsServes

Likes

Bars

Beers Drinkers

name addr license

name name addrmanf

3



interface Beers {

attribute string name;

attribute string manf;

relationship Set<Bars> servedAt

inverse Bars::serves;

relationship Set<Drinkers> fans

inverse Drinkers::likes;

}

� Relationships have inverses.

� An element from another class is indicated by
<class>::

� Form a set type with Set<type>.

4



interface Bars {

attribute string name;

attribute Struct Addr

{string street, string city, int zip}

address;

attribute Enum Lic {full, beer, none}

licenseType;

relationship Set<Drinkers> customers

inverse Drinkers::frequents;

relationship Set<Beers> serves

inverse Beers::servedAt;

}

� Structured types have names and bracketed
lists of �eld-type pairs.

� Enumerated types have names and bracketed
lists of values.

5



interface Drinkers {

attribute string name;

attribute Struct Bars::Addr

address;

relationship Set<Beers> likes

inverse Beers::fans;

relationship Set<Bars> frequents

inverse Bars::customers;

}

� Note reuse of Addr type.

6



ODL Type System

� Basic types: int, real/oat, string, enumerated
types, and classes.

� Type constructors: Struct for structures and
four collection types: Set, Bag, List, and
Array.

Limitation on Nesting

class collection

Relationship

Attribute

basic,

no class
collectionstruct

7



Multiplicity of Relationships

Many-many Many-one One-one

8



Representation of Many-One

� E/R: arrow pointing to \one."

✦ Rounded arrow = \exactly one."

� ODL: don't use a collection type for
relationship in the \many" class.

✦ Collection type remains in \one."

9



Example: Drinkers Have Favorite Beers

FrequentsServes

Likes

Bars

Beers Drinkers

name addr license

name name addrmanf
Favorite

10



interface Drinkers {

attribute string name;

attribute Struct Bars::Addr

address;

relationship Set<Beers> likes

inverse Beers::fans;

relationship Beers favoriteBeer

inverse Beers::realFans;

relationship Set<Bars> frequents

inverse Bars::customers;

}

� Also add to Beers:

relationship Set<Drinkers> realFans

inverse Drinkers::favoriteBeer;

11



One-One Relationships

� E/R: arrows in both directions.

� ODL: omit collection types in both directions.

Beers
seller
Best-Manfs

Design Issue:

Is the rounded arrow justi�ed?

Design Issue:

Here, manufacturer is an E.S.; in earlier diagrams
it is an attribute. Which is right?

12



Attributes on Relationships

Beers

price

Bars Sells

� Shorthand for 3-way relationship:

BeersBars Sells

price

Prices

13



� A true 3-way relationship.

✦ Price depends jointly on beer and bar.

� Notice arrow convention for multiway
relationships: \all other E.S. determine one
of these."

✦ Not su�ciently general to express any
possibility.

✦ However, if price, say, depended only on
the beer, then we could use two 2-way
relationships: price-beer and beer-bar.

14



Converting Multiway to 2-Way

� Baroque in E/R, but necessary in ODL and
other models.

� Create a new connecting E.S. to represent
rows of a relationship set.

✦ E.g., (Joe's Bar, Bud, $2.50) for the Sells

relationship.

� Many-one relationships from the connecting
E.S. to the others.

BeersBars

The-
Beer

Prices

Bar
The- The-

Price

BBP

15



Multiway in ODL Needs \Connecting" Class

interface Prices {

attribute real price;

relationship Set<BBP> toBBP

inverse BBP::thePrice;

}

interface BBP {

relationship Bars theBar inverse ...

relationship Beers theBeer inverse ...

relationship Prices thePrice

inverse Prices::toBBP;

}

� Inverses for theBar, theBeer must be added
to Bars, Beers.

16



Roles

Sometimes an E.S. participates more than once in
a relationship.

� Label edges with roles to distinguish.

Married

Drinkers

wifehusband

Husband Wife

d1 d2

d3 d4

� � � � � �

17



Drinkers

1 2

Buddies

Buddy1 Buddy2

d1 d2

d1 d3

d2 d1

d2 d4

� � � � � �

� Notice Buddies is symmetric, Married not.

✦ No way to say \symmetric" in E/R.

✦ But in ODL, symmetric relations are their
own inverse.

18



Roles in ODL

No problem; names of relationships handle \roles."

interface Drinkers {

attribute string name;

attribute Struct Bars::Addr

address;

relationship Set<Beers> likes

inverse Beers::fans;

relationship Set<Bars> frequents

inverse Bars::customers;

relationship Drinkers husband

inverse wife;

relationship Drinkers wife

inverse husband;

relationship Set<Drinkers> buddies

inverse buddies;

}

� Notice that Drinkers:: is optional when the
inverse is a relationship of the same class.

Design Issue

Should we replace husband and wife by one
relationship spouse?

19


