
Logical Query Languages

Motivation:

1. Logical rules extend more naturally to
recursive queries than does relational algebra.

✦ Used in SQL3 recursion.

2. Logical rules form the basis for many
information-integration systems and
applications.

1



Datalog Example

Likes(drinker, beer)

Sells(bar, beer, price)

Frequents(drinker, bar)

Happy(d) <-

Frequents(d,bar) AND

Likes(d,beer) AND

Sells(bar,beer,p)

� Above is a rule.

� Left side = head.

� Right side = body = AND of subgoals.

� Head and subgoals are atoms.

✦ Atom = predicate and arguments.

✦ Predicate = relation name or arithmetic
predicate, e.g. <.

✦ Arguments are variables or constants.

� Subgoals (not head) may optionally be
negated by NOT.

2



Meaning of Rules

Head is true of its arguments if there exist values
for local variables (those in body, not in head) that
make all of the subgoals true.

� If no negation or arithmetic comparisons, just
natural join the subgoals and project onto the
head variables.

Example

Above rule equivalent to Happy(d) =
�drinker(Frequents ./ Likes ./ Sells)

3



General Evaluation of Rules

In principle, consider all possible assignments of
values to variables. If body becomes true, add the
head to the constructed relation.

Example

S(x,y) <- R(x,z) AND R(z,y)

AND NOT R(x,y)

R =

A B

1 2
2 3

4



� Only assignments that make �rst subgoal true:

1. x! 1, z ! 2.

2. x! 2, z ! 3.

� In case (1), y ! 3 makes second subgoal true.
Since (1; 3) is not in R, the third subgoal is
also true.

✦ Thus, add (x; y) = (1; 3) to relation S.

� In case (2), no value of y makes the second
subgoal true. Thus, S =

A B

1 3

5



Safety

A rule can make no sense if variables appear in
funny ways.

Examples

� S(x) <- R(y)

� S(x) <- NOT R(x)

� S(x) <- R(y) AND x < y

In each of these cases, the result is in�nite, even if
the relation R is �nite.

� To make sense as a database operation, we
need to require three things of a variable x. If
x appears in either

1. The head,

2. A negated subgoal, or

3. An arithmetic comparison,

then x must also appear in a nonnegated,
\ordinary" (relational) subgoal of the body.

� We insist that rules be safe, henceforth.

6



A Tuple-Based Interpretation for Rules

If a rule is safe, we can evaluate like an SQL rule.

1. Consider tuple variables for each relational,
positive subgoal that range over their
relations.

2. For each assignment of tuples to each of these
subgoals, determine the implied assignment of
values to variables.

3. If the assignment is

a) Consistent and

b) Makes arithmetic and negated subgoals
true,

then add the head tuple from this assignment
to the result relation.

7



Example

S(x,y) <- R(x,z) AND R(z,y)

AND NOT R(x,y)

R =

A B

1 2
2 3

� Four assignments of tuples to subgoals:

R(x; z) R(z; y)

(1; 2) (1; 2)
(1; 2) (2; 3)
(2; 3) (1; 2)
(2; 3) (2; 3)

� Only the second gives a consistent value to z.

� That assignment also makes NOT R(x,y) true.

� Thus, (1; 3) is the only tuple for the head.

8



Datalog Programs

� A collection of rules is a Datalog program.

� Predicates/relations divide into two classes:

✦ EDB = extensional database = relation
stored in DB.

✦ IDB = intensional database = relation
de�ned by one or more rules.

� A predicate must be IDB or EDB, not both.

✦ Thus, an IDB predicate can appear in the
body or head of a rule; EDB only in the
body.

9



Example

Convert the following SQL (Find the
manufacturers of the beers Joe sells):

Beers(name, manf)

Sells(bar, beer, price)

SELECT manf

FROM Beers

WHERE name IN(

SELECT beer

FROM Sells

WHERE bar = 'Joe''s Bar'

);

to a Datalog program.

JoeSells(b) <-

Sells('Joe''s Bar', b, p)

Answer(m) <-

JoeSells(b) AND Beers(b,m)

� Note: Beers, Sells = EDB; JoeSells,
Answer = IDB.

10



Expressive Power of Datalog

� Nonrecursive Datalog = relational algebra.

� Datalog simulates SQL select-from-where
without aggregation and grouping.

� Recursive Datalog expresses queries that
cannot be expressed in SQL.

� But none of these languages have full
expressive power (Turing completeness).

11



Relational Algebra to Datalog

� Text has constructions for each of the
operators of R.A.

✦ Only hard part: selections with OR's and
NOT's.

� Simulate a R.A. expression in Datalog by
creating an IDB predicate for each interior
node and using the constuction for the
operator at that node.

12



Example: Find the bars that sell two di�erent
beers at the same price.

Sells Sells

�bar

./

�S(bar;beer1;price)

�beer 6=beer1

R1(bar,beer1,beer,price) <-

Sells(bar,beer1,price) AND

Sells(bar,beer,price);

R2(bar,beer1,beer,price) <-

R1(bar,beer1,beer,price) AND

beer1 <> beer;

Answer(bar) <-

R2(bar,beer1,beer,price);

13



Datalog to Relational Algebra

� General rule is complex; the following often
works for single rules:

✦ Problems not handled: constant
arguments and variables appearing twice
in the same atom.

✦ Can you provide the necessary �xes?

1. Use � to create for each relational subgoal
a relation whose schema is the variables of
that subgoal.

2. Handle negated subgoals by �nding an
expression for the �nite set of all possible
values for each of its variables (� a
suitable column) and take their product.
Then subtract.

3. Natural join the relations from (1), (2).

4. Get the e�ect of arithmetic comparisons
with �.

5. Project onto head with �.

� Several rules for same predicate: use [.

14



Example

S(x,y) <- R(x,z) AND R(z,y)

AND NOT R(x,y)

S1(x,y,z) := �R1(x;z)(R) ./ �R2(z;y)(R);

S2(x,y) := �x(S1) � �y(S1);

S3(x,y) := S2 � �R3(x;y)(R);

S(x,y) := �x;y(S1(x,y,z) ./ S3(x,y));

15



Recursion

� IDB predicate P depends on predicate Q if
there is a rule with P in the head and Q in a
subgoal.

� Draw a graph: nodes = IDB predicates, arc
P ! Q means P depends on Q.

� Cycles i� recursive.

Recursive Example

Sib(x,y) <- Par(x,p) AND Par(y,p)

AND x <> y

Cousin(x,y) <- Sib(x,y)

Cousin(x,y) <- Par(x,xp)

AND Par(y,yp)

AND Cousin(xp,yp)

16



Iterative Fixed-Point Evaluates Recursive

Rules

Change

to IDB?

Start

IDB = ;

Apply rules

to IDB, EDB

yes no
done

17



Example

EDB Par =

a d

b c e

f g

j k i

h

� Note, because of symmetry, Sib and Cousin

facts appear in pairs, so we shall mention only
(x; y) when both (x; y) and (y; x) are meant.

18



Sib Cousin

Initial ; ;

Round 1 (b; c); (c; e) ;

add: (g; h); (j; k)

Round 2 (b; c); (c; e)
add: (g; h); (j; k)

Round 3 (f; g); (f; h)
add: (g; i); (h; i)

(i; k)

Round 4 (k; k)
add: (i; j)

19


