3NF

One FD structure causes problems:

- If you decompose, you can't check the FD's in the decomposed relations.
- If you don't decompose, you violate BCNF.

Abstractly: $AB \to C$ and $C \to B$.

- In book: title city \rightarrow theatre and theatre \rightarrow city.
- Another example: street city \rightarrow zip, zip \rightarrow city.

Keys: $\{A, B\}$ and $\{A, C\}$, but $C \to B$ has a left side not a superkey.

- Suggests decomposition into BC and AC.
 - But you can't check the FD $AB \rightarrow C$ in these relations.

A = street, B = city, C = zip.

street	zip
545 Tech Sq. 545 Tech Sq.	02138 02139
city	zip
Cambridge Cambridge	$\begin{array}{c} 02138 \\ 02139 \end{array}$

Join:

city	street	zip
Cambridge Cambridge	545 Tech Sq. 545 Tech Sq.	$02138 \\ 02139$

"Elegant" Workaround

Define the problem away.

- A relation R is in 3NF iff for every nontrivial FD $X \to A$, either:
 - 1. X is a superkey, or
 - 2. A is prime = member of at least one key.
- Thus, the canonical problem goes away: you don't have to decompose because all attributes are prime and therefore no 3NF violations can occur.

Taking Advantage of 3NF

Theorem: For any relation R and set of FD's F, we can find a decomposition of R into 3NF relations, such that if the decomposed relations satisfy their projected dependencies from F, then their join will satisfy F itself.

- In fact, with some more effort, we can guarantee that the decomposition is also "lossless"; i.e., the join of the projections of R onto the decomposed relations is always Ritself, just as for the BCNF decomposition.
- But what we give up is absolute absence of redundancy due to FD's.
- The "obvious" approach of doing a BCNF decomposition, but stopping when a relation schema is in 3NF, doesn't always work it might still allow some FD's to get lost.

Roadmap

- 1. Study *minimal* sets of FD's: needed for the decompositions.
 - Requires study of when two sets of FD's are *equivalent*, in the sense that they are satisfied by exactly the same relation instances.
- 2. Give the algorithm for constructing a decomposition into 3NF schemas that preserves all FD's.

 \clubsuit Called the *synthesis* algorithm.

3. Show how to modify this construction to guarantee losslessness.

3NF Synthesis Algorithm

Roughly, we create for each FD in F a relation containing only its attributes.

- But: we need first to make *F* minimal in the sense that:
 - a) No FD can be eliminated from F.
 - b) No attribute can be eliminated from a left side of an FD of F.
- Note that minimal sets of FD's are not necessarily unique.

Equivalent Sets of FD's

FD sets are *equivalent* if they each derive the other, i.e., if they allow the same set of relation instances.

• For each of (a) and (b) in the definition of "minimality," we mean "without making a set of FD's inequivalent to *F*."

Testing Equivalence

 $\begin{array}{ll} X1 \to A1 & Y1 \to B1 \\ X2 \to A2 & Y2 \to B2 \\ \dots & \dots & \\ Xn \to An & Ym \to Bm \end{array}$

- For each $i, Yi \to Bi$ must follow from the set on the left.
 - i.e, $(Yi)^+$ must contain Bi, when closure is computed using the FD's on the left.
- Also, each $Xi \to Ai$ must follow from the set on the right.
- Important special case: no need to check an FD that appears in both sets.

Suppose F has $A \to B$, $B \to C$, and $AC \to D$.

- F is not minimal.
- F1 with $A \to B, B \to C$, and $A \to D$ is minimal.

• Note that from F we can infer $A \to D$, and from F1 we can infer $AC \to D$.

- F2 consisting of $A \to B$, $B \to C$ and $C \to D$ is *not* equivalent to F.
 - Note you cannot infer $C \to D$ from F.

A Dependency-Preserving Decomposition

- 1. Minimize the given set of dependencies.
- 2. Create a relation with schema XY for each FD $X \rightarrow Y$.
- 3. Eliminate a relation schema that is a subset of another.
- 4. Add in a relation schema with all attributes that are not part of *any* FD.

- Start with R = ABCD and F consisting of $A \to B, B \to C$, and $AC \to D$.
- F1 with $A \to B, B \to C$, and $A \to D$ is a minimal equivalent.
- With F1 as our minimal set of FD's, we get database schema AB, BC, and AD, which is sufficient to check F1 and therefore F.

Dependency Preservation with Losslessness

Same as for just dependency preservation, but add in a relation schema consisting of a key for R.

Example

In above example, A is a key for R, so we should add A as a relation schema. However, A is a subset of AB, and so nothing is needed; the original database schema $\{AB, BC, AD\}$ is lossless.

Not Covered

- Why basing the decomposition on a minimal equivalent set of FD's guarantees 3NF.
- Why the key + FD's synthesis approach guarantees losslessness.

Multivalued Dependencies

Consider the relation Drinkers(name, addr, phone, beersLiked), with the FD name \rightarrow addr. That is, drinkers can have several phones and like several beers. Typical relation:

name	addr	phone	beersLiked
joe	a	p1	b1
joe	a	p1	b2
joe	a	p1	b3
joe	a	p2	b1
joe	a	p2	b2
joe	a	p2	b3

•
$$Key = \{name, phone, beersLiked\}.$$

 BCNF violation: name → addr. Decompose into D1(name, addr), D2(name, phone, beersLiked).

 $\bullet \quad \text{Both are in BCNF.}$

• But look at D2:

	name	phone	beersLiked
-	joe	p1	<i>b</i> 1
	joe	p1	b2
	joe	p1	b3
	joe	p2	b1
	joe	p2	b2
	joe	p2	b3

- The phones and beers are each repeated.
 - If Joe had n phones and liked m beers, there would be nm tuples for Joe, when $\max(n,m)$ should be enough.

Multivalued Dependencies

The multivalued dependency $X \to Y$ holds in a relation R if whenever we have two tuples of Rthat agree in all the attributes of X, then we can swap their Y components and get two new tuples that are also in R.

In Drinkers, we have MVD name $\rightarrow \rightarrow$ phone. For example:

name	addr	phone	beersLiked
joe joe	a a	$\begin{array}{c} p1\\ p2 \end{array}$	b1 b2

with phone components swapped yields:

name	addr	phone	beersLiked
joe joe	$a \\ a$	$\begin{array}{c} p1\\ p2 \end{array}$	b2 b1

which are also tuples of the relation.

• Note: we must check this condition for *all* pairs of tuples that agree on name, not just one pair.

MVD Rules

- 1. Every FD is an MVD.
 - Because if $X \to Y$, then swapping Y's doesn't create new tuples.

- 2. Complementation: if $X \to Y$, then $X \to Z$, where Z is all attributes not in X or Y.

Splitting Doesn't Hold

Sometimes you need to have several attributes on the left of an MVD. For example:

Drinkers(name, areaCode, phone, beersLiked, beerManf)

name	areaCode	phone	BeersLiked	beerManf
Joe	650	555-1111	Bud	A.B.
Joe	650	555 - 1111	WickedAle	Pete's
Joe	415	555 - 9999	Bud	A.B.
Joe	415	555 - 9999	WickedAle	Pete's

• name $\rightarrow \rightarrow$ areaCode phone holds, but neither name $\rightarrow \rightarrow$ areaCode nor name $\rightarrow \rightarrow$ phone do.

4NF

Eliminate redundancy due to multiplicative effect of MVD's.

- Roughly: treat MVD's as FD's for decomposition, but not for finding keys.
- Formally: R is in Fourth Normal Form if whenever MVD $X \rightarrow Y$ is nontrivial (Yis not a subset of X, and $X \cup Y$ is not all attributes), then X is a superkey.

- Remember, $X \to Y$ implies $X \to Y$, so 4NF is more stringent than BCNF.
- Decompose R, using 4NF violation $X \to Y$, into XY and $X \cup (R - Y)$.

Drinkers(name, addr, areaCode, phone, beersLiked, beerManf)

- $FD: name \rightarrow addr$
- Nontrivial MVD's: name $\rightarrow \rightarrow$ areaCode phone and name $\rightarrow \rightarrow$ beersLiked beerManf.
- Only key: {name, areaCode, phone, beersLiked, beerManf}
- All three dependencies violate 4NF.
- Successive decomposition yields 4NF relations:

D1(name, addr)
D2(name, areaCode, phone)
D3(name, beersLiked, beerManf)