Defining a Database Schema

CREATE TABLE name (list of elements).

- Principal elements are attributes and their types, but key declarations and constraints also appear.
- Similar CREATE X commands for other schema elements X: views, indexes, assertions, triggers, domains.
 - Assertions and domains not in Oracle 7.3.2.
- "DROP X name" deletes the created element of kind X with that name.

```
CREATE TABLE Sells (
bar CHAR(20),
beer VARCHAR(20),
price real
);

DROP TABLE Sells;
```

Types

- 1. int or integer.
- 2. real or float.
- 3. CHAR(n) = fixed length character string, padded with "pad characters."
- 4. VARCHAR(n) = variable-length strings up to n characters.
- 5. BIT(n) = bit string of length n.
 - \bullet Not in Oracle 7.3.2.
- 6. Dates. SQL2 form is DATE 'yyyy-mm-dd'
 - Oracle uses a different format to be explained.
- 7. Times. Form is TIME 'hh:mm:ss[.ss...]' in SQL2.

Oracle Default Dates (Used at Stanford)

Format 'dd-mon-yy'

Example

```
CREATE TABLE Days (
          d DATE
);
INSERT INTO Days
VALUES('06-nov-97');
```

• Oracle function to_date converts a specified format into default format.

- Stored in our system as '01-jan-00'.
 - Now do you believe there is a "year 2000" problem?

Declaring Keys

Use PRIMARY KEY or UNIQUE.

- Oracle 7.3.2 treats these as synonyms.
- But only one primary key, many "uniques" allowed.
- SQL2 allows implementations to create an index (data structure to speed access given a key value) only in response to PRIMARY KEY.
 - **\Delta** But Oracle creates indexes for both.
- Two places to declare:
 - 1. After an attribute's type, if the attribute is a key by itself.
 - 2. As a separate element.
 - \bullet Essential if key is > 1 attribute.

Example

```
CREATE TABLE Sells (
    bar CHAR(20),
    beer VARCHAR(20),
    price real,
    PRIMARY KEY(bar,beer)
);
```

- On the Stanford Oracle system for this class, there is a separate data area on a separate disk for indexes.
 - Speeds access two heads are better than one.
 - Thus, you must follow any implicit indexcreating statement like "primary key," by:

USING INDEX TABLESPACE csindx

```
CREATE TABLE Beers (
    name CHAR(20) UNIQUE
        USING INDEX TABLESPACE csindx,
    manf CHAR(20)
);
```

Other Properties You Can Give to Attributes

- 1. NOT NULL = every tuple must have a real value for this attribute.
- 2. DEFAULT value = a value to use whenever no other value of this attribute is known.

```
CREATE TABLE Drinkers (
name CHAR(30) PRIMARY KEY
USING INDEX TABLESPACE csindx,
addr CHAR(50)
DEFAULT '123 Sesame St',
phone CHAR(16)
);
```

INSERT INTO Drinkers(name) VALUES('Sally')

results in the following tuple:

name	addr	phone
Sally	123 Sesame St.	NULL

- Primary key is by default not NULL.
- This insert is legal.
 - OK to list a subset of the attributes and values for only this subset.
- But if we had declared

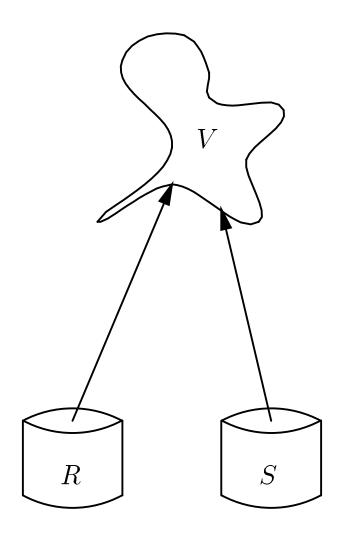
phone CHAR (16) NOT NULL

then the insertion could not be made.

Changing Columns

Add an attribute of relation R with

ALTER TABLE R ADD <column declaration>;


Example

ALTER TABLE Bars ADD phone CHAR(16)
DEFAULT 'unlisted';

- SQL2 allows columns to be dropped, e.g.,
 ALTER TABLE Bars DROP license;
- However, this statement is illegal in Oracle 7.3.2.

Views

An expression that describes a table without creating it.

• View definition form is:

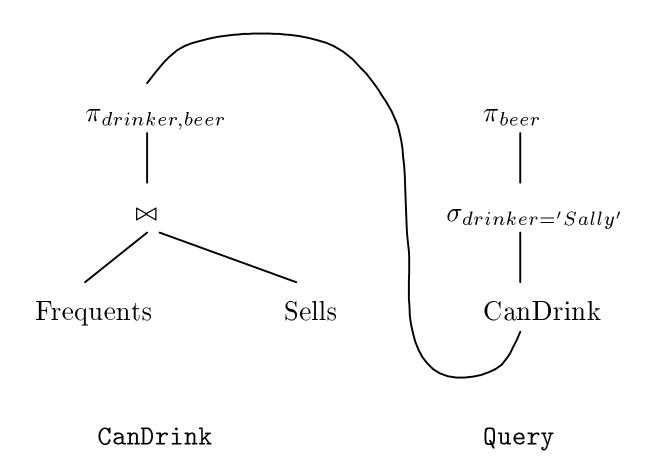
Example

The view CanDrink is the set of drinker-beer pairs such that the drinker frequents at least one bar that serves the beer.

```
CREATE VIEW CanDrink AS

SELECT drinker, beer

FROM Frequents, Sells

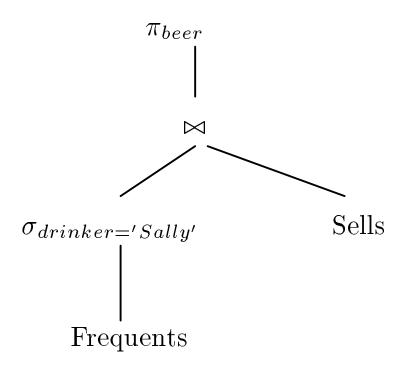

WHERE Frequents.bar = Sells.bar;
```

Querying Views

Treat the view as if it were a materialized relation.

```
SELECT beer
FROM CanDrink
WHERE drinker = 'Sally';
```

Semantics of View Use



${\bf Compose}$

Optimize Query

- 1. Push selections down tree.
- 2. Eliminate unnecessary projections.

Nulls

In place of a value in a tuple's component.

- Interpretation is not exactly "missing value."
- There could be many reasons why no value is present, e.g., "value inappropriate."

Comparing Nulls to Values

• 3rd truth value UNKNOWN.

Example

bar	beer	price
Joe's bar	Bud	NULL

SELECT bar
FROM Sells
WHERE price < 2.00 OR price >= 2.00;
----UNKNOWN
UNKNOWN
UNKNOWN
UNKNOWN

3-Valued Logic

Think of true = 1; false = 0, and unknown = 1/2. Then:

- AND = min.
- OR = max.
- $\bullet \quad \text{NOT}(x) = 1 x.$

Some Key Laws Fail to Hold

Example: Law of the excluded middle, i.e.,

$$p$$
 OR NOT p = TRUE

- For 3-valued logic: if p = unknown, then left side = $\max(1/2,(1-1/2)) = 1/2 \neq 1$.
- Like bag algebra, there is no way known to make 3-valued logic conform to all the laws we expect for sets/2-valued logic, respectively.