Functional
Programming In
Scheme and Lisp

Overview

* |n a functional programming language,
functions are first class objects.

* You can create them, put them in data
structures, compose them, specialize them,
apply them to arguments, etc.

* We'll look at how functional programming
things are done in Lisp

eval

* Remember: Lisp code is just an s-expression

* You can call Lisp’s evaluation process with the eval
function.

> (define s (list ‘cadr '(one two three)))
»>S

> (CADR '(ONE TWO THREE))

> (eval s)

TWO

> (eval (list 'cdr (car '((quote (a . b)) c))))
B

Apply

* Apply takes a function and a list of arguments for
it, and returns the result of applying the function
to the arguments:

> (apply + (1 2 3))
6

* It can be given any number of arguments, so long

as the last is a list:
>(apply + 1 2 (3 4 5))
15

* A simple version of apply could be written as
(define (apply f list) (eval (cons f list)))

Lambda

* The define special form creates a function and
gives it a name.

* However, functions don’t have to have names,
and we don’t need define to define them.

* We can refer to functions literally by using a
lambda expression.

Lambda expression

* A lambda expression is a list containing the
symbol lambda, followed by a list of

parameters, followed by a body of zero or
more expressions:

> (define f (lambda (x) (+ x 2)))
> f

##<proceedure:f>

> (f 100)

102

Lambda expression

A lambda expression is a special form

When evaluated, it creates a function and
returns a reference to it

The function does not have a name

a lambda expression can be the first
element of a function call:

> ((lambda (x) (+ x 100)) 1)
101

Other languages like Python and Javascript
have adopted the idea

define vs. define

(define (add2 x)
(+x2))

(define add?2
(lambda (x) (+ x 2)))

(define add?2 #f)

(set! add?
(lambda (x) (+ x 2)))

. The define special

form comes in two
varieties

. The three expressions

to the left are entirely
equivalent

. The first define form is

just more familiar and
convenient when
defining a function

Mapping functions

 Common Lisp and Scheme provides several mapping functions
 map (mapcar in Lisp) is the most frequently used.

* It takes a function and one or more lists, and returns the result
of applying the function to elements taken from each list, until
one of the lists runs out:

> (map abs '(3 -4 2 -5 -6))

(342506)

> (map cons '(abc) (12 3))
((@a.1)(b.2)(c.3))

> (map (lambda (x) (+ x 10)) (1 2 3))
(11 12 13)

> (map list (a b c) (1 2 3 4))

map: all lists must have same size; arguments
were: #<procedure:list> (1 2) (a b ¢)

Defining map

. . . (11 b)) .
* Defining a simple "one argument’” version of
map IS easy

(define (map1l func list)
(if (null? list)
null
(cons (func (first list))
(mapl func (rest list)))))

Define Lisp’s Every and Some

* every and some take a predicate and one or
more sequences

* When given just one sequence, they test
whether the elements satisfy the predicate:
»(every odd? ‘(1 3 5))
>t
»(some even? ‘(1 2 3))
>t

* If given >1 sequences, the predicate takes as
many args as there are sequences and args
are drawn one at a time from them:

»(every > (1 3 5) (0 2 4))
> #t

every

(define (every f list)
;; hote the use of the and function
(if (null? list)
f#t
(and (f (first list))
(every f (rest list)))))

some

(define (some f list)
(if (null? list)
f#
(or (f (first list))
(some f (rest list)))))

Will this work?

(define (some f list)
(not (every (lambda (x) (not (f x)))

list)))

filter

(filter <f> <list>) returns a list of the elements of
<list> which satisfy the predicate <f>

> (filter odd? (01 2 3 4 5))

(13 5)

> (filter (lambda (x) (> x 98.6))
'(101.1 98.698.1 99.4 102.2))

(101.1 99.4 102.2)

Example: filter
(define (myfilter func list)

;; returns a list of elements of list where function is true
(cond ((null? list) null)
((func (first list))
(cons (first list)
(myfilter func (rest list))))
(#t (myfilter func (rest list)))))

> (myfilter even? (1234567))
(2 4 6)

Example: filter

* Define integers as a function that returns a
list of integers between a min and max

(define (integers min max)
(if (> min max)
empty
(cons min (integers (add1 min) max))))

 And prime? as a predicate that is true of
prime numbers and false otherwise

> (filter prime? (integers 2 20))
(2357111317 19)

Here’s another pattern

 We often want to do something like sum the
elements of a sequence
(define (sum-list [)
(if (null? 1)
0
(+ (first 1) (sum-list (rest 1)))))

* And other times we want their product
(define (multiply-list)
(if (null?)
1
(* (first) (multiply-list (rest 1)))))

Here’s another pattern

 We often want to do something like sum the
elements of a sequence
(define (sum-list |)
(if (null? 1)
0
(+ (first 1) (sum-list (rest 1)))))

* And other times we want their product
(define (multiply-list)
(if (null?)
1
(* (first) (multiply-list (rest 1)))))

Example: reduce

» Reduce takes (i) a function, (ii) a final value, and (iii) a
list
» Reduce(+ 0 (vl v2v3...vn))is just
Vi+V2+V3+..Vn+0
» In Scheme/Lisp notation:
> (reduce +0(12345))
15
(reduce *1°(12345))
120

Example: reduce

(define (reduce function final list)
(if (null? list)
final
(function
(first list)
(reduce function final (rest list)))))

(define (sum-list list) Using reduce

;; returns the sum of the list elements
(reduce + 0 list))

(define (mul-list list)
;; returns the sum of the list elements
(reduce * 1 list))

(define (copy-list list)
;; copies the top level of a list
(reduce cons () list))

(define (append-list list)
;; appends all of the sublists in a list
(reduce append ‘() list))

MapReduce Wikipedia. the free encyclopedia

%, Help us provide free content to the world by donating today!> Log in / create account

WIKIPEDIA

The Free Encyclopedia
navigation

article | discussion |

 edit this page | | history |

= Main page

« Contents

« Featured content
« Current events
« Random article

search

(Go) (Search)

interaction

= About Wikipedia
= Community portal
= Recent changes

MapReduce

From Wikipedia, the free encyclopedia

MapReduce is a software framework
introduced by Google to support
parallel computations over large
(multiple petabytel')) data sets on
clusters of computers. This framework
is largely taken from map and reduce
functions commonly used in functional
programming,?! although the actual
semantics of the framework are not the
same.[!

MapReduce implementations have
been written in C++, Java, Python and
other languages.

Contents [hide]

1 Logical view
1.1 Example
2 Dataflow
2.1 Input reader
2.2 Map function
2.3 Partition function
2.4 Comparison function
2.5 Reduce function
2.6 Output writer
3 Distribution and reliability
4 Uses
5 Implementations

> compose

#<procedure:compose> comp05|ng

> (define (square x) (* x x)) functions
> (define (double x) (* x 2))

> (square (double 10))

400

> (double (square 10))

200

> (define sd (compose square double))

> (sd 10)

400

> ((compose double square) 10)
200

Here’s how to define it

(define (my-compose f1 f2)
(lambda (x) (f1 (f2 x))))

Variables, free and bound

* In this function, to what does the variable
GOOGOL refer?

(define (big-number? x)
;; returns true if x is a really big number

(>x GOOGOL))

* The scope of the variable X is just the body of
the function for which it's a parameter.

Here, GOOGOL is a global variable

> (define GOOGOL (expt 10 100))
> GOOGOL

100000000000000000000000000000000000000
0000000000000000000000000000000000000
0000000000000000000000000

> (define (big-number? x) (> x GOOGOL))
> (big-number? (add1 (expt 10 100)))
Ht

Which X is accessed at the end?

> (define GOOGOL (expt 10 100))

> GO0GOL

1000
00
000000000000000

> (define x -1)

> (define (big-number? x) (> x GOOGOL))
> (big-number? (add1 (expt 10 100)))

Ht

Variables, free and bound

* |n the body of this function, we say that the
variable (or symbol) X is bound and GOOGOL
is free.

(define (big-number? x)
; returns true if X is a really big number

(> X GOOGOL))

e Ifit has a value, it has to be bound somewhere
else

The let form creates local variables

Note: square brackets are

i line parens, but only
> (Iet [(pl 3'1415) match other square
brackets. They are there
(e 27168)] to help you cope with

paren fatigue.

(big-number? (expt pi e)))
#f

* The general form is (let <varlist> . <body>)

* |t creates a local environment, binding the variables
to their initial values, and evaluates the expressions
in <body>

Let creates a block of expressions

(if (> a b)
(let ()
(printf "a is bigger than b.~n")
(printf "b is smaller than a.~n")
f#t)
#f)

Let is just syntactic sugar for lambda

(let [(pi 3.1415) (e 2.7168)]
(big-number? (expt pi e)))

((lambda (pi e) (big-number? (expt pi e)))
3.1415
2.7168)

and this is how we did it back before ~1973

Let is just syntactic sugar for lambda

What happens here:

(define x 2)
(let [(x 10) (xx (* x 2))]
(printf "x is ~s and xx is ~s.~”n" x xx))

Let is just syntactic sugar for lambda

What happens here:

(define x 2)

((lambda (x xx) (printf "x is ~s and xx is ~s.~n" x xx))
10
(* 2 x))

Let is just syntactic sugar for lambda

What happens here:

(define x 2)

(define (f000034 x xx)
(printf "x is ~s and xx is ~s.~n" x xx))
(f000034 10 (* 2 x))

let and let*

* The let special form evaluates all of the initial value
expressions, and then creates a new environment in
which the local variables are bound to them, “in
parallel”

* The let* form does is sequentially

* |et* expands to a series of nested lets

—(let™ [(x 100)(xx (* 2 x))] (foo x xx))

—(let [(x 100)]
(let [(xx (* 2 x))]
(foo x xx)))

What happens here?

> (define X 10)

> (let [(X (* X X))]
(printf "X is ~s.~n" X)
(set! X 1000)
(printf "X is ~s.~n" X)
1)

27?7

> X
P

What happens here?

> (define X 10)

> (let [(X (* X X))]
(printf “X is ~s\n” X)
(set! X 1000)
(printf “X is ~s\n" X)
1)

X is 100

X 1s 1000

-1

> X

10

What happens here?

> (define GOOGOL (expt 10 100))
> (define (big-number? x) (> x GOOGOL))
> (let [(GOOGOL (expt 10 101))]

(big-number? (add1 (expt 10 100))))
27?7

What happens here?

> (define GOOGOL (expt 10 100))

> (define (big-number? x) (> x GOOGOL))

> (let [[GOOGOL (expt 10 101))]
(big-number? (add1 (expt 10 100))))

Ht

* The free variable GOOGOL is looked up in the
environment in which the big-number?
Function was defined!

functions

* Note that a simple notion of a function can
give us the machinery for

—Creating a block of code with a sequence of
expressions to be evaluated in order

—Creating a block of code with one or more local
variables

* Functional programming language is to use
functions to provide other familiar constructs
(e.g., objects)

e And also constructs that are unfamiliar

Dynamic vs. Static Scoping

* Programming languages either use dynamic or
static (aka lexical) scoping

* |n a statically scoped language, free variables in
functions are looked up in the environment in
which the function is defined

* |[n a dynamically scoped language, free
variables are looked up in the environment in
which the function is called

Closures

Lisp is a lexically scoped language.

Free variables referenced in a function those
are looked up in the environment in which the
function is defined.

Free variables are those a function (or block) doesn’t
create scope for.

A closure is a function that remembers the
environment in which it was created

An environment is just a collection of variable
bindings and their values.

Closure example

> (define (make-counter)
(let ((count 0)) (lambda () (set! count (add1 count)))))

> (define c1 (make-counter))

> (define c2 (make-counter))

> (c1)

1

> (c1)

2

> (c1)

3

> (c2)

?77?

A fancier make-counter

Write a fancier make-counter function that takes
an optional argument that specifies the
Increment

> (define byl (make-counter))

> (define by2 (make-counter 2))

> (define decrement (make-counter -1))
> (by2)

2

(by2)

4

Optional arguments in Scheme

(define (make-counter . args)

;; args is bound to a list of the actual arguments passed to the
function

(let [(count O)
(inc (if (null? args) 1 (first args)))]
(lambda () (set! count (+ count inc)))))

Keyword arguments in Scheme

 Scheme, like Lisp, also has a way to define functions
that take keyword arguments

—(make-counter)
—(make-counter :initial 100)
—(make-counter :increment -1)

—(make-counter :initial 10 :increment -2)

* Different Scheme dialects have introduced different
ways to mix positional arguments, optional
arguments, default values, keyword argument, etc.

Closure tricks

We can write several
functions that are
closed in the same
environment, which
can then provide a
private
communication
channel

(define foo #f)
(define bar #f)

(let ((secret-msg "none"))

(set! foo
(lambda (msg)
(set! secret-msg msg)))

(set! bar
(lambda () secret-msg)))

(display (bar)) ; prints "none"
(newline)
(foo "attack at dawn")

(display (bar)) ; prints "attack at
dawn"

