Variables,
Environments
and Closures

A\%

But professor, you
said yesterday that
x was equal to 2!

Overview

We will

 Touch on the notions of variable extent and
scope

* Introduce the notions of lexical scope and
dynamic scope for variables

* Provide a simple model for variable
environments in Scheme

* Show examples of closures in Scheme

Variables, free and bound

* In this function, to what does the variable
GOOGOL refer?

(define (big-number? x)
;; returns true if x is a really big number

(> x GOOGOL))

 The scope of the variable X is just the body of
the function for which it’s a parameter.

Here, GOOGOL is a global variable

> (define GOOGOL (expt 10 100))
> GO0GOL

100000000000000000000000000000000000000
000000000000000000000000000000000000000
00000000000000000000000

> (define (big-number? x) (> x GOOGOL))
> (big-number? (add1 (expt 10 100)))
Ht

Which X is accessed at the end?

> (define GOOGOL (expt 10 100))
> GOO0GOL

1000
00
0000000000000

> (define x -1)

> (define (big-number? x) (> x GOOGOL))
> (big-number? (add1 (expt 10 100)))

Ht

Variables, free and bound

* |n the body of this function, we say that the
variable (or symbol) X is bound and GOOGOL

is free

(define (big-number? x)
; returns true if X is a really big number
(> X GOOGOL))

* If it has a value, it has to be bound somewhere
else

The let form creates local variables

Note: square brackets are

: like parens, but only match
> (|€t [(Pl 3.141 5) other square brackets.
(e 2.7 168)] They can to help you cope

with paren fatigue.

(big-number? (expt pi e)))
#t
* The general form is (let <varlist> . <body>)

* |t creates a local environment, binding the

variables to their initial values, and evaluates
the expressions in <body>

Let creates a block of expressions

(if (> a b)
(let ()
(printf "a is bigger than b.~n")
(printf "b is smaller than a.~n")
f#t)
#f)

Let is just syntactic sugar for lambda

(let [(pi 3.1415) (e 2.7168)]
(big-number? (expt pi e)))

((lambda (pi e) (big-number? (expt pi €)))
3.1415
2.7168)

and this is how we did it back before ~1973

Let is just syntactic sugar for lambda

What happens here:

(define x 2)
(let [(x 10) (xx (* x 2))]
(printf "x is ~¥s and xx is ~s.~n" x xx))

X is 10 and xx is 4.

Let is just syntactic sugar for lambda

What happens here:

(define x 2)

((lambda (x xx) (printf "x is ~s and xx is ~s.~n" x xx))
10
(* 2 x))

X is 10 and xx is 4.

Let is just syntactic sugar for lambda

What happens here:

(define x 2)

(define (f000034 x xx)
(printf "x is ~s and xx is ~s.~n" x xx))
(f000034 10 (* 2 x))

X is 10 and xx is 4.

let and let*

* The let special form evaluates all initial value
expressions, and then creates a new environ-
ment with local variables bound to them, “in
parallel”

* The let* form does is sequentially
* let* expands to a series of nested lets
(let* [(x 100)(xx (* 2 x))] (foo x xx))

(let [(x 100)]
(let [(xx (* 2 x))]
(foo x xx)))

What happens here?

> (define X 10)

> (let [(X (* X X))]
(printf "X is ~s.~n" X)
(set! X 1000)
(printf "X is ~s.~n" X)
1)

27?7

> X
P

What happens here?

> (define X 10)

> (let [(X (* X X))]
(printf “X is ~s\n” X)
(set! X 1000)
(printf “X is ~s\n” X)
1)

Xi1s 100

X 1s 1000

-1

> X

10

What happens here?

> (define GOOGOL (expt 10 100))
> (define (big-number? x) (> x GOOGOL))
> (let [(GOOGOL (expt 10 101))]

(big-number? (add1 (expt 10 100))))
27?7

What happens here?

> (define GOOGOL (expt 10 100))

> (define (big-number? x) (> x GOOGOL))

> (let [(GOOGOL (expt 10 101))]
(big-number? (add1 (expt 10 100))))

Ht

* The free variable GOOGOL is looked up in the
environment in which the big-number?
Function was defined!

* Not in the environment in which it was called

functions

* Note that a simple notion of a function can
give us the machinery for

— Creating a block of code with a sequence of
expressions to be evaluated in order

— Creating a block of code with one or more
local variables

* Functional programming language is to use
functions to provide other familiar constructs
(e.g., objects)

 And also constructs that are unfamiliar

Dynamic vs. Static Scoping

* Programming languages either use dynamic or
static (aka lexical) scoping

* |n a statically scoped language, free variables in
functions are looked up in the environment in
which the function is defined

* |[n a dynamically scoped language, free
variables are looked up in the environment in
which the function is called

History

* Lisp started out as a dynamically scoped
language and moved to static scoping with

Common Lisp in ~1980

* Today, fewer languages use only dynnamic
scoping, Logo and Emacs Lisp among them

* Perl and Common Lisp let you define some
variables as dynamically scoped

Dynamic scoping

Here’s a model for dynamic binding:
e Variables have a global stack of bindings

* Creating a new variable X in a block pushes a
binding onto the global X stack

* Exiting the block pops X's binding stack
e Accessing X always produces the top binding

Special variables in Lisp

e Common Lisp's dynamically scoped variables
are called special variables

* Declare a variable special using defvar

> (set 'reg 5)

5

> (defun check-reg () reqg)
CHECK-REG

> (check-req)

5

> (let ((reg 6)) (check-reqg))
5

> (defvar *spe* 5)

SPEC

> (defun check-spe () *spe*)
CHECK-SPEC

> (check-spec)

5

> (let ((*spe* 6)) (check-spe))
6

Advantages and disadvantages

+ Easy to implement

+ Easy to modify a function’s behavior by
dynamically rebinding free variables

(let ((10 stderr)) (printf “warning...”))
- Can unintentionally shadow a global variable

- A compiler can never know what a free
variable will refer to, making type checking
impossible

Closures

Lisp is a lexically scoped language

Free variables referenced in a function those
are looked up in the environment in which the
function is defined

Free variables are those a function (or block) doesn’t
create scope for

A closure is a function that remembers the
environment in which it was created

An environment is just a collection of variable
names and their values, plus a parent
environment

Example: make-counter

* make-counter creates an environment using let with a
local variable Cinitially O

* |t defines and returns a new function, using lambda,
that can access & modify C

> (define (make-counter) > (c1)
(let ((C0)) 1
(lambda () > (c1)
(set! C (+1 C)) 9
) > (c1)
> (define c1 (make-counter)) 3
> (define c2 (make-counter)) > (c2)

277

global env

N

null

> (define C 100)

> (define (mc) (let ((C 0)) (lambda () (set! C (+ C 1)) C)))
> (define c1 (mc))

> (define c2 (mc))

> (c1)

1

> (c2)

1

global env

m.L—) null

C —> 100

> (define C 100)

> (define (mc) (let ((C 0)) (lambda () (set! C (+ C 1)) C)))
> (define c1 (mc))

> (define c2 (mc))

> (c1)

1

> (c2)

1

global env

<‘
parent | T

C —> 100

mcC

g | ||
v

v
() (let((Co)..)

> (define C 100)
> (define (mc) (let ((C 0)) (lambda () (set! C (+ C 1)) C)))
> (define c1 (mc))
> (define c2 (mc))

> (c1)
1
> (c2)
1

global env

C

mcC

cl

<‘
.L—> null

—> 100

—

g | ||
v

| () ((let ((C0)) ...))
T
v v

() ((set!C(+C1))C)

> (define C 100)

> (define (mc) (let ((C 0)) (lambda () (set! C (+ C 1)) C)))
> (define c1 (mc))

> (define c2 (mc))

> (c1)

: S —

> (c2)
1 /7
global env
<— C — > 0
.L—> null
C —> 100

SR
me R parent_

() (setic(4c1)c)

1y
v Vv 1

() ((set! C(+C1))C

S \W) | |
c2 ™ i
myh
)

> (define C 100)

> (define (mc) (let ((C 0)) (lambda () (set! C (+ C 1)) C)))
> (define c1 (mc))

> (define c2 (mc))

> (c1)
: - /\
> (c2)
' /7
 parent
global env - - 1|
.L—> null

C ——> 100

m R =

1 - O (llet((c0)..)) P
c2 ™~

((set' C (C1))C)

--1
v

() ((set!C(+C1))C)

> (define C 100)

> (define (mc) (let ((C 0)) (lambda () (set! C (+ C 1)) C)))
> (define c1 (mc))

> (define c2 (mc))

> (c1)
: - /\
> (c2)
i /7
 parent
global env - - 1|
.L—> null

C ——> 100

m R =

1 - O (llet((c0)..)) e
c2 ™~

((set' C (C1))C)

--1
v

() ((set!C(+C1))C)

A fancier make-counter

Write a fancier make-counter function that takes
an optional argument that specifies the

iIncrement

> (define byl (make-counter))

> (define by2 (make-counter 2))

> (define decrement (make-counter -1))
> (by2)

2

(by2)

4

Optional arguments in Scheme

> (define (f (x 10) (y 20))
(printf "x=~a and y="~a\n" x y))

> (f)

x=10 and y=20
> (f -1)

x=-1 and y=20
> (f-1-2)

x=-1 and y=-2

Fancier make-counter

(define (make-counter (inc 1))
(let ((C 0))
(lambda () (set! C (+ Cinc)))))

Keyword arguments in Scheme

* Scheme, like Lisp, also has a way to define functions
that take keyword arguments

—(make-counter)
—(make-counter :initial 100)
—(make-counter :increment -1)

—(make-counter :initial 10 :increment -2)

e Different Scheme dialects have introduced different

ways to mix positional arguments, optional argu-
ments, default values, keyword argument, etc.

Closure tricks

We can write several
functions that are
closed in the same
environment, which
can then provide a
private
communication
channel

(define foo #f)
(define bar #f)

(let ((secret-msg "none"))

(set! foo
(lambda (msg)
(set! secret-msg msg)))

(set! bar
(lambda () secret-msg)))

(display (bar)) ; prints "none"
(newline)
(foo "attack at dawn")

(display (bar)) ; prints "attack at
dawn"

Summary

Scheme, like most modern languages, is
lexically scoped

Common Lisp is by default, but still allows
some variables to be declared to be
dynamically scopec

A few languages still use dynamic scoping

Lexical scoping supports functional program-
ming & powerful mechanisms (e.g., closures)

More complex to implement, though

