Python

regular expressions

OH NO! THE KILLER || BUT T0 FIND THEM WE'D HAVE T0 SEARCH
WHENEVER T LEARN A, | | MUST HAVE ROLLOWED | | THROUGH 200 MB OF EMAILS LOOKING FOR
NEW SKILL I CoNCOCT | | HER ON VACATION! |[SOMETHING FORMATTED LIKE AN ADDRESS!

ELABORATE. FNTASY | ;
SCENARI0S WHERE (T ~— IT5 HoPELESS)
LETS IME. SHVE THE DAY, %
EVERYBODY STND BACK. T KNOW REGULAR
> BAK EXPRESSIONS .

“Some people, when
confronted with a problem,
think ‘I know, I'll use regular
expressions.” Now they
have two problems.”

-- Jamie Zawinski
http://www.jwz.org/

Regular Expressions

* Regular expressions are a powerful string
manipulation tool

* All modern languages have similar library
packages for regular expressions

* Use regular expressions to:
* Search a string (search and match)
* Replace parts of a string (sub)
* Break strings into smaller pieces (split)

Python’s Regular Expression Syntax

* Most characters match themselves

The regular expression “test” matches the
string ‘test’, and only that string

* [x] matches any one of a list of characters
“[abc]” matches *a’, ‘b’ ,or ‘c’
* [*x] matches any one character that is not
included in x

“[*abc]” matches any single character except
\aI,IbI’or \CI

Python’s Regular Expression Syntax

* “” matches any single character

* Parentheses can be used for grouping
“(abc)+” matches " abc’, ‘abcabc’,
‘abcabcabe’, eftc.

* x|y matches x or y
“this|that” matches *this’ and ‘that’,
butnot ‘thisthat’.

Python’sRegular Expression Syntax

* x* matches zero or more x’s
“a*” matches ’’,’a’, "aa’, efc.
* x+ matches one or more x’'s
“at” matches " a’,’ aa’,’ aaa’, etc.
* x? matches zero or one x’s
“a?” matches ' 7 or ’ a’
* x{m, n} matches i x's, where m<i<n
“a{2,3}" matches "aa’ or ’"aaa’

Regular Expression Syntax

*» “\d” matches any digit; “\D” any non-digit

* “\s” matches any whitespace character; “\S”
any non-whitespace character

* “‘\w” matches any alphanumeric character;
“\W” any non-alphanumeric character

* “A” matches the beginning of the string; “$” the
end of the string

* “\b” matches a word boundary; “\B” matches a
character that is not a word boundary

Search and Match

* The two basic functions are re.search and
re.match

« Search looks for a pattern anywhere in a string

» Match looks for a match staring at the beginning
Both return None (logical false) if the pattern
isn’t found and a “match object” instance if it is

>>> import re

>>> pat = "a*b”

>>> re.search(pat, "fooaaabcde")
<_sre.SRE_Match object at 0x809c0>
>>> re.match(pat, "fooaaabcde")

>>>

Q: What’s a match object?

e A: an instance of the match class with the details
of the match result

>>> rl = re.search("a*b","fooaaabcde")

>>> rl.group() # group returns string matched
'aaab’

>>> rl.start() # index of the match start

3

>>> rl.end() # index of the match end

7

>>> rl.span() # tuple of (start, end)

(3, 7)

What got matched?

* Here's a pattern to match simple email
addresses

\w+@(\w+\.)+(com|org|net|edu)

>>> patl = "\w+@(\w+\.)+(com|org|net|edu)"
>>> rl = re.match(pat,"finin@cs.umbc.edu")
>>> rl.group()

'finin@cs.umbc.edu’

* We might want to extract the pattern parts, like
the email name and host

What got matched?

* We can put parentheses around groups we
want to be able to reference

>>> pat2 = "(\w+)@((\w+\.)+(com|org|net|edu))"

>>> r2 = re.match(pat2,"finin@cs.umbc.edu")

>>> r2.group(l)

'finin'

>>> r2.group(2)

'cs.umbc.edu’

>>> r2.groups()

r2.groups()

('finin', 'cs.umbc.edu', 'umbc.', 'edu’)

* Note that the ‘groups’ are numbered in a
preorder traversal of the forest

What got matched?

* We can ‘label’ the groups as well...

>>> pat3 =" (?P<name>\w+)@ (?P<host>(\w+
\.)+(com|org|net|edu))"

>>> r3 = re.match
(pat3,"finin@cs.umbc.edu")

>>> r3.group('name’')

'finin'

>>> r3.group('host')

'cs.umbc.edu’
* And reference the matching parts by the labels

More re functions

* re.split() is like split but can use patterns

>>> re.split("\W+", “This... is a test,
short and sweet, of split().”)

['This', 'is', 'a', 'test', 'short’,
'and', 'sweet', 'of', 'split’, ‘']

* re.sub substitutes one string for a pattern

>>> re.sub('(blue|white|red)', 'black', 'blue
socks and red shoes')

'black socks and black shoes’
* re.findall() finds al matches

>>> re.findall("\d+"”,"12 dogs,1l cats, 1 egg")
['12', '11', 1]

Compiling regular expressions

* If you plan to use a re pattern more than once,
compile it to a re object

* Python produces a special data structure that
speeds up matching

>>> capt3 = re.compile(pat3)

>>> cpat3

<_sre.SRE_Pattern object at 0x2d9c0>

>>> r3 = cpat3.search("finin@cs.umbc.edu")
>>> r3

<_sre.SRE_Match object at 0x895a0>

>>> r3.group()

'finin@cs.umbc.edu'

Pattern object methods

Pattern objects have methods that parallel the re
functions (e.g., match, search, split, findall, sub),
e.g.:

>>> p1 = re.compile("\w+@\w+\.+com|org|net|edu")

>>> p1.match("steve@apple.com").group(0) W

'steve@apple.com’

>>> p1.search("Email steve@apple.com today.").group(0)

'steve@apple.com’
>>> p1.findall("Email steve@apple.com and bill@msft.com now.")

['steve@apple.com’, 'bill@msft
>>> p2 = re.compile("[.?!]+\s+"

>>> p2.split("Tired? Go to bed! Now!! ")

[Tired', 'Go to bed', 'Now', " ']

Example: pig latin

*Rules
* If word starts with consonant(s)
— Move them to the end, append “ay”
* Else word starts with vowel(s)
— Keep as is, but add “zay”
* How might we do this?

http://cs.umbc.edu/courses/33 1/current/code/python/pig.py

The pattern

([ocdfghjkimnpgrstvwxyz]+)(\w+)

piglatin.py

import re
pat = ‘([bcdfghjkimnpgrstvwxyz]+)(\w+)
cpat = re.compile(pat)

def piglatin(string):
return " ".join([piglatin1(w) for w in string.split()])

piglatin.py

def piglatin1(word):
"""Returns the pig latin form of a word. e.g.:

piglatin1("dog”) => "ogday".
match = cpat.match(word)
if match:

consonants = match.group(1)

rest = match.group(2)

return rest + consonents + “ay”
else:

return word + "zay"

