Python 3

Some material adapted
from Upenn cis391
slides and other sources

Importing and

Importing and Modules

e Use classes & functions defined in another file

* A Python module is a file with the same name
(plus the .py extension)
* Like Java import, C++ include
* Three formats of the command:
import somefile
from somefile import *

from somefile import className

* The difference? What gets imported from the
file and what name refers to it after importing

import ...
import somefile

» Everything in somefile.py gets imported.

* To refer to something in the file, append the
text “somefile.” to the front of its name:

somefile.className.method (“abc”)
somefile.myFunction (34)
Somefile.cut off theshold

from ... import *

from somefile import *

* Everything in somefile.py gets imported

* To refer to anything in the module, just use its
name. Everything in the module is now in the
current namespace.

* Take care! Using this import command can
easily overwrite the definition of an existing
function or variable!

className.method (Yabc”)
myFunction (34)
cut off threhold

from ... import ...

from somefile import className

* Only the item className in somefile.py gets
imported.

* After importing className, you can just use it
without a module prefix. It's brought into the
current namespace.

e Take care! Overwrites the definition of this
name if already defined in the current
namespace!

className.method (“abc”) € imported

myFunction (34) € Not imported
cut off theshold

Directories for module files

» Where does Python look for module files?

* The list of directories where Python will look
for the files to be imported is sys.path

* This is just a variable named ‘path’ stored
inside the ‘sys’ module
>>> import sys
>>> sys.path

[", '/Library/Frameworks/Python.framework/Versions/2.5/lib/
python2.5/site-packages/setuptools-0.6¢c5-py2.5.eqgg’, ...]

* To add a directory of your own to this list,
append it to this list

sys.path.append ('/my/new/path’)

Import and reload

* The import statement will only load a
module once

* This is a feature, since many modules
might require a standard package like re

* If you import a module, and then edit it,
you want to be able to read it in again

*You can not do this with import ®

*You can do this with the reload function
©

>>> import hw7

>>> hw7 import
<module 'hw7' from 'hw7.pyc'>

>>> import hw7

>>> reload(hw7)

<module 'hw7' from 'hw7.pyc">

>>> dir(hw7)

[builtins__'," doc_' "' file ' ' name__',' package ’,

‘amicable’, 'amicable_pairs_between', 'divisors', 'even’, 'hailstone’,

'sum_mult_3_5', 'syllables’, 'vowel']

>>> hw7.__ file__

'hw7.pyc'

>>>hw7.__doc__

" UMBC 331 Spring 2010 HW7 -- YOURNAME HERE,
YOURID@UMBC.EDU''

Subtle import/reload behavior

* Experiment with m.py
* Import m, edit file, reload(m)
* From m import *, edit file, reload m

* Python’s namespaces are similar to
Scheme’s environments

Object Oriented Programming
in Python:
Defining Classes

It’s all objects...

* Everything in Python is really an object.
* We've seen hints of this already...
“hello” .upper ()
list3.append(‘a’)
dict2.keys ()
* These look like Java or C++ method calls.
* New object classes can easily be defined in
addition to these built-in data-types.
¢ In fact, programming in Python is typically
done in an object oriented fashion.

Defining a Class

* A class is a special data type which defines
how to build a certain kind of object.

* The class also stores some data items that are
shared by all the instances of this class

* Instances are objects that are created which
follow the definition given inside of the class

* Python doesn’t use separate class interface
definitions as in some languages
* You just define the class and then use it

Methods in Classes

* Define a method in a class by including
function definitions within the scope of the
class block

* There must be a special first argument self
in all of method definitions which gets bound
to the calling instance

* There is usually a special method called
__init __in most classes

* We'll talk about both later...

A simple class def: student

student:
“WWWA class representing a

student ”””

__init (self,n,a):
self.full name = n
self.age = a

get age(self):
self.age

Creating and Deleting
Instances

Instantiating Objects

* There is no “new” keyword as in Java.

* Just use the class name with () notation and
assign the result to a variable

* init _ serves as a constructor for the
class. Usually does some initialization work

* The arguments passed to the class name are
giventoits init () method

* So, the __init__ method for student is passed
“‘Bob” and 21 and the new class instance is
bound to b:

b = student (“Bob”, 21)

Constructor: __init__

*An__ init method can take any number of
arguments.

¢ Like other functions or methods, the
arguments can be defined with default values,
making them optional to the caller.

* However, the first argument self in the
definition of __init__ is special...

Self

* The first argument of every method is a
reference to the current instance of the class

* By convention, we name this argument self

*In_ init , self refers to the object
currently being created; so, in other class
methods, it refers to the instance whose
method was called

* Similar to the keyword this in Java or C++

* But Python uses self more often than Java
uses this

Self

* Although you must specify sel explicitly
when defining the method, you don’t include it
when calling the method.

* Python passes it for you automatically

Defining a method: Calling a method:
(this code inside a class definition.)

set_age(self, num): >>> x.set_age(23)
self.age = num

Deleting instances: No Need to “free”

* When you are done with an object, you don’t
have to delete or free it explicitly.

* Python has automatic garbage collection.

* Python will automatically detect when all of the
references to a piece of memory have gone
out of scope. Automatically frees that
memory.

* Generally works well, few memory leaks

* There’s also no “destructor” method for
classes

Access to Attributes
and Methods

Definition of student

student:
“WYWA class representing a student
__init (self,n,a):
self.full name = n
self.age = a
get age (self):
self.age

Traditional Syntax for Access

>>> f = student (“Bob Smith”, 23)

>>> f.full name # Access attribute
“Bob Smith”

>>> f.get age() # Access a method
23

Accessing unknown members

* Problem: Occasionally the name of an attribute
or method of a class is only given at run time...

e Solution:

getattr (object instance, string)

* string is a string which contains the name of
an attribute or method of a class

* getattr(object instance, string)
returns a reference to that attribute or method

getattr(object_instance, string)

>>> f = student (“Bob Smith”, 23)

>>> getattr (£, “full name”)

“Bob Smith”

>>> getattr (£, “get age”)
<method get age of class
studentClass at 010B3C2>

>>> getattr (f, “get age”) () # call it
23

>>> getattr (f, “get birthday”)

Raises AttributeError - No method!

hasattr(object_instance,string)

>>> f = student (“Bob Smith”, 23)
>>> hasattr (£, “full name”)

True

>>> hasattr (£, “get age”)

True

>>> hasattr(f, “get birthday”)
False

Attributes

I\

Two Kinds of Attributes

* The non-method data stored by objects are
called attributes

* Data attributes

* Variable owned by a particular instance of a class

* Each instance has its own value for it

* These are the most common kind of attribute

Class attributes

» Owned by the class as a whole

* All class instances share the same value for it

+ Called “static” variables in some languages

« Good for (1) class-wide constants and (2)

building counter of how many instances of the
class have been made

Data Attributes

* Data attributes are created and initialized by
an__init () method.
« Simply assigning to a name creates the attribute
* Inside the class, refer to data attributes using self

—for example, self.full name

teacher:

“A class representing teachers.”
__init (self,n):
self.full name =
print name (self):

self.full name

n

Class Attributes

Because all instances of a class share one copy of a
class attribute, when any instance changes it, the value
is changed for all instances

Class attributes are defined within a class definition and
outside of any method

Since there is one of these attributes per class and not
one per instance, they’re accessed via a different
notation:

* Access class attributes using self.__class__.name notation
-- This is just one way to do this & the safest in general.

sample: >>> a = sample()

x = 23 >>> a.increment ()
increment (self) : >>> a._ class__.x
self. class .x +=1 24

Data vs. Class Attributes

counter:

>>> a = counter()
overall total = 0 =

>>> b counter ()
>>> a.increment ()
>>> b.increment ()
0 >>> b.increment ()
‘ >>> a.my_ total

1

gglf.myitotal =
attribute
increment (self) :

counter.overall total = \
counter.overall total + 1
self.my total = \
self.my_total + 1

>>> a._ class__.overall_ total
3

>>> b.my_ total

2

>>> b._ class__.overall_ total
3

Inheritance

Subclasses

* Classes can extend the definition of
other classes
* Allows use (or extension) of methods and
attributes already defined in the previous one
* To define a subclass, put the name of
the superclass in parens after the
subclass’s name on the first line of the
definition
Cs student (student) :
* Python has no ‘extends’ keyword like Java
» Multiple inheritance is supported

Multiple Inheritance

* Python has two kinds of classes: old and new (more
on this later)

* Old style classes use depth-first, left-to-right access
* New classes use a more complex, dynamic approach

class AO(): x =0 >>> from mi import *
class BO(AO): x =1 >>>20.X

class CO(AO): x =2 0

class DO(BO,CO): pass >>>bo.x

a0 = AO() !

bo = BO() > cox

co=CO() 2

do = DO() .

1
>>>

http://cs.umbc.edu/courses/33 1/current/code/python/mi.py

Redefining Methods

* To redefine a method of the parent class,
include a new definition using the same name
in the subclass
» The old code won’t get executed

* To execute the method in the parent class in
addition to new code for some method,
explicitly call the parent’s version of method

parentClass.methodName (self,a,b,c)

* The only time you ever explicitly pass ‘self’ as
an argument is when calling a method of an
ancestor

Definition of a class extending student

Student:
“A class representing a student.”

_ init_ (self,n,a):
self.full name = n
self.age = a

get_age(self):
self.age

Cs_student (student):
“A class extending student.”

_init (self,n,a,s):

student. init (self,n,a) #Call init for

self.section_num = s

get_age(): #Redefines get age method entirely
“Age: ” + str(self.age)

Extending __init__

Same as redefining any other method...

« Commonly, the ancestor's __init__ method is
executed in addition to new commands

* You'll often see something like this in the
__init__ method of subclasses:

parentClass. init (self, x, vy)

where parentClass is the name of the parent’s
class

Special Built-In
Methods and Attributes

Built-In Members of Classes

* Classes contain many methods and
attributes that are always included
» Most define automatic functionality triggered
by special operators or usage of that class
* Built-in attributes define information that must
be stored for all classes.
* All built-in members have double
underscores around their names:
__init doc

Special Methods

*E.g., the method repr exists for all
classes, and you can always redefine it

* repr__ specifies how to turn an instance
of the class into a string

sprint £ sometimescalls £. repr () to
produce a string for object f

* Typing £ atthe REPL prompt calls
__repr__ todetermine what to display as
output

Special Methods — Example

student:

__repr (self) :

“I'm named ” + self.full name

>>> f = student (“Bob Smith”, 23)
>>> f

I’m named Bob Smith

>>> f

“I’'m named Bob Smith”

Special Methods

* You can redefine these as well:

__init__ : The constructor for the class
__cmp__ : Define how == works for class
__len__ : Define how len (obj) works
__copy__ : Define how to copy a class

* Other built-in methods allow you to give a
class the ability to use [] notation like an array
or () notation like a function call

Special Data Items

* These attributes exist for all classes.

__doc__ :Variable for documentation string for class

__class__ : Variable which gives you a
reference to the class from any instance of it

_ module - Variable which gives a reference to
the module in which the particular class is defined

__dict__ :The dictionary that is actually the

namespace for a class (but not its superclasses)
* Useful:

«dir (x) returns a list of all methods and attributes
defined for object x

11

Special Data Items — Example

>>> f = student (“Bob Smith”, 23)

>>> f. doc

A class representing a student.

>>> f. class
< class studentClass at 010B4Co >

>>> g = f. class (“"Tom Jones”,
34)

Private Data and Methods

* Any attribute/method with two leading under-
scores in its name (but none at the end) is
private and can’t be accessed outside of class

* Note: Names with two underscores at the
beginning and the end are for built-in
methods or attributes for the class

* Note: There is no ‘protected’ status in Python;
S0, subclasses would be unable to access
these private data either

12

