Pyth

Some material adapted
from Upenn cmpe391
slides and other sources

Overview

* Names & Assignment

* Sequences types: Lists, Tuples, and
Strings

* Mutability

* Understanding Reference Semantics in
Python

A Code Sample (in IDLE)

X = 34 - 23 # A comment.
y = “Hello” # Another one.
z = 3.45
1f z == 3.45 or y == “Hello":
X =X + 1
y =y + " World” # String concat.
print X
orint vy

Enough to Understand the Code

Indentation matters to meaning the code
* Block structure indicated by indentation

The first assignment to a variable creates it

* Dynamic typing: No declarations, names don’t have
types, objects do

Assignment uses = and comparison uses ==
For numbers + - */ % are as expected.

» Use of + for string concatenation.

 Use of % for string formatting (like printf in C)

Logical operators are words (and, or,not)
not symbols

The basic printing command is print

Basic Datatypes

* Integers (default for numbers)

z=5/2 # Answer 2, integer division
* Floats

X = 3.4560
e Strings

« Canuse ”..." or’...” to specify, "foo" == 'foo’

* Unmatched can occur within the string
“John’s” or ‘John said “foo!”.’

» Use triple double-quotes for multi-line strings or
strings than contain both * and “ inside of them:
€€ €€ “ai b“CH!! J)

Whitespace

Whitespace is meaningful in Python, especially
indentation and placement of newlines

eUse a newline to end a line of code
Use \ when must go to next line prematurely

*No braces {} to mark blocks of code, use
consistent indentation instead

* First line with /ess indentation is outside of the block
* First line with more indentation starts a nested block

*Colons start of a new block in many constructs,
e.g. function definitions, then clauses

Comments

e Start comments with #, rest of line is ignored

* Can include a "documentation string” as the
first line of a new function or class you define

* Development environments, debugger, and
other tools use it: it's good style to include one

def fact(n):

WWWfact(n) assumes n 1s a positive
integer and returns facorial of n.”””
assert (n>0)

return 1 1if n==1 else n*fact (n-1)

Assignment

Binding a variable in Python means setting a
name to hold a reference to some object

* Assignment creates references, not copies

Names in Python don’t have an intrinsic type,
objects have types

Python determines type of the reference auto-
matically based on what data is assigned to it

You create a name the first time it appears on the
left side of an assignment expression:
X = 3

A reference is deleted via garbage collection after
any names bound to it have passed out of scope

Python uses reference semantics (more later)

Naming Rules

e Names are case sensitive and cannot start
with a number. They can contain letters,
numbers, and underscores.

bob Bob bob 2 bob bob 2 BoB

e There are some reserved words:

and, assert, break, class, continue,
def, del, elif, else, except, exec,
finally, for, from, global, 1f,
import, 1n, 1s, lambda, not, or,
pass, print, raise, return, try,
while

Naming conventions

The Python community has these
recommended naming conventions

* joined_lower for functions, methods and,
attributes

* joined_lower or ALL_CAPS for constants
* StudlyCaps for classes

 camelCase only to conform to pre-existing
conventions

 Attributes: interface, internal, _ private

Assignment

* You can assign to multiple names at the
same time
>>> x, y = 2, 3
>>> X
2
>>> vy
3

his makes it easy to swap values
>>> X, v =vy, X

* Assignments can be chained
>>> a = b = x = 2

Accessing Non-Existent Name

Accessing a name before it's been properly
created (by placing it on the left side of an
assignment), raises an error

>>> vy

Traceback (most recent call last):
File "<pyshell#1l6>", line 1, in -toplevel-
%
NameError: name ‘y' 1s not defined
>>> y = 3
>>> vy
3

Sequence types:
Tuples, Lists, and
Strings

r

BN

Sequence Types
1. Tuple

* A simple immutable ordered sequence of
items

* |tems can be of mixed types, including
collection types

2. Strings

 Immutable

» Conceptually very much like a tuple
3. List

* Mutable ordered sequence of items of
mixed types

Similar Syntax

* All three sequence types (tuples,
strings, and lists) share much of the
same syntax and functionality.

» Key difference:
* Tuples and strings are immutable
» Lists are mutable

* The operations shown in this section
can be applied to all sequence types

* most examples will just show the
operation performed on one

Sequence Types 1

* Define tuples using parentheses and commas
>>> tu = (23, ‘abc’, 4.56, (2,3), ‘def’)

* Define lists are using square brackets and
commas
>>> 11 = [Y“abc”, 34, 4.34, 23]

* Define strings using quotes (", ‘, or ™).
>>> st = “Hello World”
>>> st = ‘Hello World’
>>> st = “"WW"This 1s a multi-line

string that uses triple quotes.”””

Sequence Types 2

e Access individual members of a tuple, list, or
string using square bracket “array” notation

e Note that all are 0 based...

>>> tu = (23, ‘abc’, 4.56, (2,3), ‘def’)

>>> tu[l] # Second item in the tuple.
‘abc’

>>> 11 = [Y“abc”, 34, 4.34, 23]

>>> 11[1] # Second item in the list.
34

>>> st = “Hello World”

>>> st [1] # Second character in string.

\el

Positive and negative indices

>>> t = (23, ‘abc’, 4.56, (2,3), ‘def’)

Positive index: count from the left, starting with 0
>>> t[1]
‘abc’

Negative index: count from right, starting with —1
>>> t[-3]

4.56

Slicing: Return Copy of a Subset

>>> t = (23, ‘abc’, 4.56, (2,3), ‘def’)

*Return a copy of the container with a subset of
the original members. Start copying at the first
index, and stop copying before the second
iIndex.

>>> t[1:4]
(Yabc’, 4.56, (2,3))
* You can also use negative indices
>>> t[l:-1]
(Yabc’, 4.506, (2,3))

Slicing: Return Copy of a Subset

>>> t = (23, ‘abc’, 4.56, (2,3), ‘def’)

*Omit first index to make a copy starting from
the beginning of the container

>>> t[:2]
(23, ‘abc’)

*Omit second index to make a copy starting at
the first index and going to the end of the
container

>>> t[2:]
(4.50, (2,3), ‘def’)

Copying the Whole Sequence

e [:] makes a copy of an entire sequence
>>> t[:]
(23, ‘abc’, 4.506, (2,3), ‘def’)

* Note the difference between these two lines
for mutable sequences

>>> 12 = 11 # Both refer to 1 ref,

changing one affects both

>>> 12 = 11[:] # Independent copies, two
refs

The ‘in’ Operator

e Boolean test whether a value is inside a container:

>>> t = [1, 2, 4, 5]
>>> 3 1in t
False
>>> 4 1in t
True
>>> 4 not 1n t
False
* For strings, tests for substrings
>>> a = 'abcde'
>>> '¢c' in a
True
>>> 'cd' 1n a
True
>>> 'ac' 1in a
False

* Be careful: the in keyword is also used in the syntax
of for loops and list comprehensions

The + Operator

* The + operator produces a new tuple, list, or
string whose value is the concatenation of its
arguments.

>>> (1, 2, 3) + (4, 5, 0)
(L, 2, 3, 4, 5, 0)

>>> [1, 2, 3] + [4, 5, 6]
(1, 2, 3, 4, 5, 6]

>>> \\Helloll _I_ \\ 144 _I_ \\Worldll
‘Hello World’

The * Operator

 The * operator produces a new tuple, list, or
string that “repeats” the original content.

>>> (1, 2, 3) * 3
(1, 2, 3, 1, 2, 3, 1, 2, 3)

>>> [1, 2, 3] * 3
[11 2! 3/ 1/ 2/ 3/ ll 2/ 3]

>>> “Hello” * 3
‘HelloHelloHello’

Mutability:
Tuples vs. Lists

C
&

Lists are mutable

>>> 11 = [‘abce’, 23, 4.34, 23]
>>> 11[1] = 45
>>> 11

[‘abc’, 45, 4.34, 23]

* We can change lists in place.

* Name /i still points to the same memory
reference when we're done.

Tuples are immutable

>>> t = (23, ‘abc’, 4.56, (2,3), ‘def’)
>>> t[2] = 3.14

Traceback (most recent call last):
File "<pyshell#75>", line 1, in -toplevel-
tul[2] = 3.14
TypeError: object doesn't support item assignment

*You can’t change a tuple.

*You can make a fresh tuple and assign its
reference to a previously used name.
>>> t = (23, ‘abc’, 3.14, (2,3), ‘def’)

* The immutability of tuples means they’re faster
than lists.

Operations on Lists Only

>>> 11 = [1, 11, 3, 4, 5]

>>> li.append(‘a’) # Note the method
syntax

>>> 173
[11 11/ 3/ 4/ 5/ ‘a,]

>>> li.insert (2, ‘i')
>>>11
(1, 11, ‘', 3, 4, 5, ‘a’]

The extend method vs +

e + creates a fresh list with a new memory ref
* extend operates on list 11 in place.

>>> 1i.extend ([9, 8, 7])
>>> 13
[:I—I 2/ ‘j-’I 3/ 4/ 5/ ‘a-’I 9/ 8/ 7]

* Potentially confusing:
» extend takes a list as an argument.
« append takes a singleton as an argument.
>>> 11.append([10, 11, 12])
>>> 11

[11 2/ ‘i,I 3/ 4/ 5/ ‘a,I 9/ 8/ 7/ [10,
11, 127]]

Operations on Lists Only

* Lists have many methods, including index,
count, remove, reverse, sort

>>> 11 = [‘a’, ‘b’, ‘c¢’', ‘b']

>>> li.index(‘b’) # index of 1%* occurrence
1

>>> 1i.count (‘b’) # number of occurrences
2

>>> 1i.remove (‘b’) # remove 1%% occurrence
>>> 11

[\a/, \CI’ \bl]

Operations on Lists Only

>>> 11 = [5, 2, 6, 8]
>>> 1i.reverse () # reverse the list *in place*
>>> 11

[8/ 6’ 2/ 5]
>>> 1i.sort () # sort the list *in place*
>>> 11

(2, 5, 6, 8]

>>> li.sort (some function)
sort in place using user-defined comparison

Tuple details

* The comma is the tuple creation operator, not parens

>>> 1,

(1,)
e Python shows parens for clarity (best practice)

>>> (1,)
(1)
* Don't forget the comma!
>>> (1)
1

* Trailing comma only required for singletons others
* Empty tuples have a special syntactic form

>>> ()

()

>>> tuple()

()

Summary: Tuples vs. Lists

* Lists slower but more powerful than tuples

* Lists can be modified, and they have lots of
handy operations and mehtods

* Tuples are immutable and have fewer
features

* To convert between tuples and lists use the
list() and tuple() functions:

11 = list (tu)
tu = tuple(l1)

Understanding Reference
Semantics in Python

Understanding Reference Semantics

* Assignment manipulates references

—X =y does not make a copy of the object y
references

—X =y makes x reference the object y references

* Very useful; but beware!, e.g.
>>>a=1[1,2,3] #anow references the list[1, 2, 3]
>>>p=a # b now references what a references
>>> a.append(4) # this changes the list a references

>>> print b # if we print what b references,
[1, 2, 3, 4] # SURPRISE! It has changed...

e Why?

Understanding Reference Semantic

* There's alot going on with x = 3
* An integer 3 is created and stored in memory
* A name x is created

* An reference to the memory location storing
the 3 is then assigned to the name x

 So. When we say that the value of x is 3, we
mean that x now refers to the integer 3

Name: x __—7| Type: Integer
Ref: <address1>+—— Data: 3

name list memory

Understanding Reference Semantics

The data 3 we created is of type integer —
objects are typed, variables are not

In Python, the datatypes integer, float, and
string (and tuple) are “immutable”

This doesn’'t mean we can’t change the value
of X, i.e. change what x refers to ...

For example, we could increment x:
>>> x = 3

>>> x = x + 1

>>> X

4

Understanding Reference Semantics

When we increment x, then what happens is:
1. The reference of name x is looked up.
2. The value at that reference is retrieved.

Type: Integer
Name: x // Data: 3
Ref: <address1>

>>> X x + 1

Understanding Reference Semantics

When we increment x, then what happening is:
1. The reference of name x is looked up.
2. The value at that reference is retrieved.

3. The 3+1 calculation occurs, producing a new

data element 4 which is assigned to a fresh
memory location with a new reference

Type: Integer
" | Data: 3

Name: x
Ref: <address1> /

Type: Integer
Data: 4

>>> X x + 1

Understanding Reference Semantics

When we increment x, then what happening is:
1. The reference of name x is looked up.
2. The value at that reference is retrieved.

3. The 3+1 calculation occurs, producing a new
data element 4 which is assigned to a fresh
memory location with a new reference

4. The name x is changed to point to new ref

Type: Integer
Name: x Data: 3
Ref! <address1> |—__

. | Type: Integer
Data: 4

>>> X x + 1

Assignment

So, for simple built-in datatypes (integers, floats,
strings) assignment behaves as expected

X = 3 # Creates 3, name x refers to 3
y = x # Creates name y, refers to 3
y = 4 # Creates ref for 4. Changes vy
print x # No effect on x, still ref 3

Assignment

So, for simple built-in datatypes (integers, floats,
strings) assignment behaves as expected

Xx =3 # Creates 3, name x refers to 3
y = x # Creates name y, refers to 3
y = 4 # Creates ref for 4. Changes vy
print x # No effect on x, still ref 3

Name: x
Ref: <address1>

Type: Integer
Data: 3

v

Assignment

So, for simple built-in datatypes (integers, floats,
strings) assignment behaves as expected
x = 3 # Creates 3,
Yy = X # Creates name y, refers to 3

y = 4 # Creates ref for 4. Changes vy
print x # No effect on x, still ref 3

Name: x
Ref: <address1>

Name: y
Ref: <address2>

»
»

/'

name X refers to 3

Type: Integer
Data: 3

Assignment

So, for simple built-in datatypes (integers, floats,
strings) assignment behaves as expected

X = 3 # Creates 3, name x refers to 3
y = x # Creates name y, refers to 3
y = 4 # Creates ref for 4. Changes y
print x # No effect on x, still ref 3

3
Name: x
Ref: <address1> » | Type: Integer
/ Data: 3
Name: y / —
Ref: <address2> ype: Integer

Data: 4

Assignment

So, for simple built-in datatypes (integers, floats,
strings) assignment behaves as expected

X = 3 # Creates 3, name x refers to 3
y = x # Creates name y, refers to 3
y =4 # Creates ref for 4. Changes y
print x # No effect on x, still ref 3

Name: x

Ref: <address1> Type: Integer

Data: 3

v

Name: y

Ref: <address2> Type: Integer

Data: 4

v

Assignment

So, for simple built-in datatypes (integers, floats,
strings) assignment behaves as expected

X = 3 # Creates 3, name x refers to 3
y = x # Creates name y, refers to 3
y = 4 # Creates ref for 4. Changes vy
print x # No effect on x, still ref 3

Name: x
Ref: <address1>

Type: Integer
Data: 3

v

Name: y

Ref: <address2> Type: Integer

Data: 4

v

Assignment

So, for simple built-in datatypes (integers, floats,
strings) assignment behaves as expected

X = 3 # Creates 3, name x refers to 3
y = x # Creates name y, refers to 3

y = 4 # Creates ref for 4. Changes vy
print x # No effect on x, still ref 3

Name: x

Ref: <address1> Type: Integer

Data: 3

v

Name: y

Ref: <address2> Type: Integer

Data: 4

v

Assignment & mutable objects

For other data types (lists, dictionaries, user-defined
types), assignment work the same, but some
methods change the objects

« These datatypes are “mutable”

« Change occur in place

 We don'’t copy them to a new memory address each time
* |f we type y=x, then modify y, both x and y are changed

busutab ke x = dBiéabl@anple object
>>> y = X Yy = X

>>> y = 4 make a change to y

>>> print x look at x

3 x will be changed as well

Why? Changing a Shared List

a=1_[1, 2, 3] a 11213
a

b = a >1 2|3
b
a

a.append(4) > 112|314

Surprising example surprising no more

So now, here’s our code:

>>>a=1[1,2,3] #anow references the list[1, 2, 3]

>>>p=a # b now references what a references
>>> g.append(4) # this changes the list a references
>>> print b # if we print what b references,

[1, 2, 3, 4] # SURPRISE! It has changed...

Conclusion

* Python uses a simple reference
semantics much like Scheme or Java

