
4/10/2012

1

Tail Recursion
Problems with Recursion

• Recursion is generally favored over iteration in
Scheme and many other languages

– It’s elegant, minimal, can be implemented with
regular functions and easier to analyze formally

– Some languages don’t have iteration (Prolog)

• It can also be less efficient

more functional calls and stack operations (context
saving and restoration)

• Running out of stack space leads to failure
deep recursion

Tail recursion is iteration

• Tail recursion is a pattern of use that can be
compiled or interpreted as iteration, avoiding
the inefficiencies

• A tail recursive function is one where every
recursive call is the last thing done by the
function before returning and thus produces
the function’s value

• More generally, we identify some proceedure
calls as tail calls

Tail Call
A tail call is a procedure call inside another
procedure that returns a value which is then
immediately returned by the calling procedure

def foo(data):

 bar1(data)

 return bar2(data)

def foo(data):

 if test(data):

 return bar2(data)

 else:

 return bar3(data)

A tail call need not come at the textual end of the

procedure, but at one of its logical ends

Tail call optimization

• When a function is called, we must remember
the place it was called from so we can return
to it with the result when the call is complete

• This is typically stored on the call stack

• There is no need to do this for tail calls

• Instead, we leave the stack alone, so the
newly called function will return its result
directly to the original caller

Scheme’s top level loop

• Consider a simplified version of the REPL

(define (repl)

 (printf “> “)

 (print (eval (read)))

 (repl))

• This is an easy case: with no parameters there
is not much context

http://en.wikipedia.org/wiki/Tail_recursion
http://en.wikipedia.org/wiki/Tail_recursion

4/10/2012

2

Scheme’s top level loop 2

• Consider a fancier REPL

(define (repl) (repl1 0))

(define (repl1 n)

 (printf “~s> “ n)

 (print (eval (read)))

 (repl1 (add1 n)))

• This is only slightly harder: just modify the
local variable n and start at the top

Scheme’s top level loop 3

• There might be more than one tail recursive call

(define (repl1 n)

 (printf “~s> “ n)

 (print (eval (read)))

 (if (= n 9)

 (repl1 0)

 (repl1 (add1 n))))

• What’s important is that there’s nothing more
to do in the function after the recursive calls

Two skills

• Distinguishing a trail recursive call from a non
tail recursive one

• Being able to rewrite a function to eliminate
its non-tail recursive calls

Simple Recursive Factorial

(define (fact1 n)

 ;; naive recursive factorial

 (if (< n 1)

 1

 (* n (fact1 (sub1 n)))))

Is this a tail call?

No. It must be called and its
value returned before the
multiplication can be done

Tail recursive factorial

(define (fact2 n)
 ; rewrite to just call the tail-recursive
 ; factorial with the appropriate initial values
 (fact2.1 n 1))

(define (fact2.1 n accumulator)

; tail recursive factorial calls itself
; as last thing to be done

 (if (< n 1)
 accumulator
 (fact2.1 (sub1 n) (* accumulator n))))

Is this a tail call?

Yes. Fact2.1’s
args are evalua-
ted before it’s
called.

Trace shows what’s
going on

> (requireracket/trace)

> (load "fact.ss")

> (trace fact1)

> (fact1 6)

|(fact1 6)

| (fact1 5)

| |(fact1 4)

| | (fact1 3)

| | |(fact1 2)

| | | (fact1 1)

| | | |(fact1 0)

| | | |1

| | | 1

| | |2

| | 6

| |24

| 120

|720

720

4/10/2012

3

fact2
> (trace fact2 fact2.1)

> (fact2 6)

|(fact2 6)

|(fact2.1 6 1)

|(fact2.1 5 6)

|(fact2.1 4 30)

|(fact2.1 3 120)

|(fact2.1 2 360)

|(fact2.1 1 720)

|(fact2.1 0 720)

|720

720

• Interpreter & compiler note

the last expression to be

evaled & returned in

fact2.1 is a recursive call

• Instead of pushing state

on the sack, it reassigns

the local variables and

jumps to beginning of the

procedure

• Thus, the recursion is

automatically transformed

into iteration

Reverse a list

• This version works, but has two problems

(define (rev1 list)

 ; returns the reverse a list

 (if (null? list)

 empty

 (append (rev1 (rest list)) (list (first list))))))

• It is not tail recursive

• It creates needless temporary lists

A better reverse

(define (rev2 list) (rev2.1 list empty))

(define (rev2.1 list reversed)

 (if (null? list)

 reversed

 (rev2.1 (rest list)

 (cons (first list) reversed))))

rev1 and rev2
> (load "reverse.ss")

> (trace rev1 rev2 rev2.1)

> (rev1 '(a b c))

|(rev1 (a b c))

| (rev1 (b c))

| |(rev1 (c))

| | (rev1 ())

| | ()

| |(c)

| (c b)

|(c b a)

(c b a)

> (rev2 '(a b c))

|(rev2 (a b c))

|(rev2.1 (a b c) ())

|(rev2.1 (b c) (a))

|(rev2.1 (c) (b a))

|(rev2.1 () (c b a))

|(c b a)

(c b a)

>

The other problem

• Append copies the top level list structure of
it’s first argument.

• (append ‘(1 2 3) ‘(4 5 6)) creates a copy of the
list (1 2 3) and changes the last cdr pointer to
point to the list (4 5 6)

• In reverse, each time we add a new element
to the end of the list, we are (re-)copying the
list.

Append (two args only)

(define (append list1 list2)

 (if (null? list1)

 list2

 (cons (first list1)

 (append (rest list1) list2))))

4/10/2012

4

Why does this matter?

• The repeated rebuilding of the reversed list is
needless work

• It uses up memory and adds to the cost of
garbage collection (GC)

• GC adds a significant overhead to the cost of
any system that uses it

• Experienced programmers avoid algorithms
that needlessly consume memory that must
be garbage collected

Fibonacci
• Another classic recursive function is computing

the nth number in the fibonacci series
(define (fib n)
 (if (< n 2)
 n
 (+ (fib (- n 1))
 (fib (- n 2)))))

• But its grossly inefficient

– Run time for fib(n) ≅ O(2
n

)

– (fib 100) can not be computed this way

Are the tail calls?

This has two problems

• That recursive calls
are not tail recursive
is the least of its
problems

• It also needlessly
recomputes many
values

fib(6)

Fib(5) Fib(4)

Fib(4) Fib(3) Fib(3) Fib(2)

Fib(3) Fib(2) Fib(2) Fib(1)

Trace of (fib 6)

> (fib 6)

>(fib 6)

> (fib 5)

> >(fib 4)

> > (fib 3)

> > >(fib 2)

> > > (fib 1)

< < < 1

> > > (fib 0)

< < < 0

< < <1

> > >(fib 1)

< < <1

< < 2

> > (fib 2)

> > >(fib 1)

< < <1

> > >(fib 0)

< < <0

< < 1

< <3

> >(fib 3)

> > (fib 2)

> > >(fib 1)

< < <1
> > >(fib 0)
< < <0
< < 1
> > (fib 1)
< < 1
< <2
< 5
> (fib 4)
> >(fib 3)
> > (fib 2)
> > >(fib 1)
< < <1
> > >(fib 0)
< < <0
< < 1
> > (fib 1)
< < 1
< <2
> >(fib 2)
> > (fib 1)
< < 1
> > (fib 0)
< < 0
< <1
< 3
<8
8
>

Tail-recursive version of Fib
Here’s a tail-recursive version that runs in 0(n)

(define (fib2 n)

 (cond ((= n 0) 0)

 ((= n 1) 1)

 (#t (fib-tr n 2 0 1))))

(define (fib-tr target n f2 f1)

 (if (= n target)

 (+ f2 f1)

 (fib-tr target (+ n 1) f1 (+ f1 f2))))

We pass four args: n

is the current index,

target is the index of

the number we want,

f2 and f1 are the two

previous fib numbers

Trace of (fib2 10)
> (fib2 10)

>(fib2 10)

>(fib-tr 10 2 0 1)

>(fib-tr 10 3 1 1)

>(fib-tr 10 4 1 2)

>(fib-tr 10 5 2 3)

>(fib-tr 10 6 3 5)

>(fib-tr 10 7 5 8)

>(fib-tr 10 8 8 13)

>(fib-tr 10 9 13 21)

>(fib-tr 10 10 21 34)

<55

55

10 is the target, 5 is the
current index fib(3)=2
and fib(4)=3

Stop when current index
equals target and return
sum of last two args

http://en.wikipedia.org/wiki/Garbage_collection_(computer_science)
http://en.wikipedia.org/wiki/Fibonacci_number

4/10/2012

5

Compare to an iterative version

• The tail recursive version
passes the “loop
variables” as arguments
to the recursive calls

• It’s just a way to do
iteration using recursive
functions without the
need for special iteration
operators

def fib(n):

 if n < 3:

 return 1

 else:

 f2 = f1 = 1

 x = 3

 while x<n:

 f1, f2 = f1 + f2, f1

 return f1 + f2

No tail call elimination in many PLs

• Many languages don’t optimize tail calls,
including C, Java and Python

• Recursion depth is constrained by the space
allocated for the call stack

• This is a design decision that might be justified
by the worse is better principle

• See Guido van Rossum’s comments on TRE

Python example
> def dive(n=1):

... print n,

... dive(n+1)

...

>>> dive()

1 2 3 4 5 6 7 8 9 10 ... 998 999

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

 File "<stdin>", line 3, in dive

 ... 994 more lines ...

 File "<stdin>", line 3, in dive

 File "<stdin>", line 3, in dive

 File "<stdin>", line 3, in dive

RuntimeError: maximum recursion depth exceeded

>>>

Conclusion
• Recursion is an elegant and powerful control

mechanism

• We don’t need to use iteration

• We can eliminate any inefficiency if we

Recognize and optimize tail-recursive calls, turning
recursion into iteration

• Some languages (e.g., Python) choose not to
do this, and advocate using iteration when
appropriate

But side-effect free programming remains easier to
analyze and parallelize

http://en.wikipedia.org/wiki/Worse_is_better
http://neopythonic.blogspot.com/2009/04/tail-recursion-elimination.html

