Lisp and
Scheme |

Versions of LISP

« LISP is an acronym for LISt Processing language
* Lisp (b. 1958) is an old language with many variants
— Fortran is only older language still in wide use
— Lisp is alive and well today
* Most modern versions are based on Common Lisp
¢ Scheme is one of the major variants
— We'll use Scheme, not Lisp, in this class
— Scheme is used for CS 101 in some universities
* The essentials haven’t changed much

4/10/2012

Why Study Lisp?

* It’s a simple, elegant yet powerful language
* You will learn a lot about PLs from studying it

* We'll look at how to implement a Scheme
interpreter in Scheme and Python

* Many features, once unique to Lisp, are now in
“mainstream” PLs: python, javascript, perl ...

* It will expand your notion of what a PL can be

* Lisp is considered hip and esoteric among
computer scientists

LAST NIGHT I DRIFTED OFF || [f AT ONKE, JUSTUKE THEY %0, TFELTA | TRULY, THS WS
WHILE READING A LisP Book J| I GREAT ENUSHTENMENT. Tsaw THE NAKED Il - THE LANGUMGE.
I STRUCTURE OF LisP Cooe WNvowD BeroRe ME i - FROVM WHGH e

s wor?

= B

=

O = -
F Xum <

s -
THE PATTERNS AND METAPRTTERNS DANCED.

(SHNTAY FADED, A0 T Sk W THE RURITY OF

T VAN, OSTENSIELY, YES.
HOVESTLY, WE HAOKED s
OF IT TOGETHER WiTH PERL.

SUDDENLY, I WAS BATHED
IN A SUFFUSION OF BLUE. IW‘!D(I‘(W OF IDEAS MANIFEST,

We lost the documentation on quantum mechanics. You'll have to decode
the regexes yourself.

Java C PHP Ruby Haskell Lisp -

Java fans

C fans

PHP fans
Ruby fans
Haskell fans

Lisp fans

How Programming Language Fanboys See Each Others’ Languages

LISP Features

* S-expression as the universal data type — either at atom
(e.g., number, symbol) or a list of atoms or sublists

* Functional Programming Style — computation done by
applying functions to arguments, functions are first class
objects, minimal use of side-effects

« Uniform Representation of Data & Code — (A B C D) can be
interpreted as data (i.e., a list of four elements) or code
(calling function ‘A’ to the three parameters B, C, and D)

* Reliance on Recursion —iteration is provided too, but
recursion is considered more natural and elegant

* Garbage Collection — frees programmer’s explicit memory
management

http://en.wikipedia.org/wiki/Lisp_(programming_language)

What’s Functional Programming?

* The FP paradigm: computation is applying
functions to data

* Imperative or procedural programming: a
program is a set of steps to be done in order

* FP eliminates or minimizes side effects and
mutable objects that create/modify state
—E.g., consider f1(f2(a), f2(b))

* FP treats functions as objects that can stored,
passed as arguments, composed, etc.

Pure Lisp and Common Lisp

* Lisp has a small and elegant conceptual core
that has not changed much in almost 50 years.

* McCarthy’s original Lisp paper defined all of
Lisp using just seven primitive functions

* Common Lisp, developed in the 1980s as an
ANSI standard, is large (>800 builtin functions),
has most modern data-types, good program-
ming environments, and good compilers

4/10/2012

But | want to learn Lisp!

* Lisp is used in many practical systems, but
Scheme is not

* Learning Scheme is a good introduction to Lisp

* We can only give you a brief introduction to
either language, and at the core, Scheme and
Lisp are the same

* We'll point out some differences along the way

EScheme

* Scheme is a dialect of Lisp that is favored by
people who teach and study programming
languages

* Why?

—It’s simpler and more elegant than Lisp

—It’s pioneered many new programming language
ideas (e.g., continuations, call/cc)

—It’s influenced Lisp (e.g., lexical scoping of variables)

—It’s still evolving, so it’s a good vehicle for new ideas

But | want to learn Clojure! (,

* Clojure is a new Lisp dialect that compiles to
the Java Virtual Machine

* |t offers advantages of both Lisp (dynamic
typing, functional programming, closures, etc.)
and Java (multi-threading, fast execution)

* We'll look at Clojure briefly later

DrScheme and MzScheme 0

* We’'ll use the PLT Scheme system developed by
a group of academics (Brown, Northeastern,
Chicago, Utah)

* It's most used for teaching introductory CS
courses

* MzScheme is the basic scheme engine and can
be called from the command line and assumes
a terminal style interface

* DrScheme is a graphical programming environ-
ment for Scheme

http://en.wikipedia.org/wiki/Common_Lisp
http://clojure.org/
http://www.plt-scheme.org/

C f O ncket-angorg Cu @ OWa”0 a2

((CA Ra

Racket s 2 Start Quickl

proggamening G < Download
ngusge. Racket
Grow your Program Grow your Language Grow your Skills

[finin@linux3 ~1$ more fact.ss
(define (fact n)
(if (<n2)

Mzscheme

on gl.umbc.edu

Jopt/racket/collects/racket/private/misc. rkt:85:7

1
(x n (fact (- n D))
[finin@linux3 ~]$ mzscheme
Welcome to Racket v5.1.3.
>n
reference to undefined identifier: n

> (define n 100)
>n
100
> (load "fact.ss")

> fact

#<procedure: fact>

> (define (square x) (% x x))
> (fact (square (+ n 1)))

21383208674715542 54947920361 372818 145499

9240261106582797: 075922013 2212 14982 711

2491443161663 1790364969639564111139527866532

35180596 39421640, 131468
333264238371 827879149976251

3606231253770884 3026 015755772599433

14804043 6233577 4613

38748460171734873765421258939931211688889078784694214

4/10/2012

T T = TSI =

Untitled ¥ {define .)w Save [Debug @ Check Syntax @, Run 2 Stop @

(define (a2 x} [+ x 2]}

{define [spuare x] (% x x])

DrScheme

Welcome o DrScheme
Language: Advanced Stute:
Teachpack: matixss.
This progrex should be tested.
> (addz 100}

4.1 pm]
cusiom; memory limit 128 megabytes.

Advanced Student custom 112]

ann sauare.ss - Ditacket
sy i Macra Siapper 4 Dobug @ Chock Syntax O, fum £ Si0p @

DrRacket

e 1o gl

esans 1.5
Language: et 80 s, memaey it 128 1.

oy g e » i

Informal Scheme/Lisp Syntax

* An atom can be an integer, or an
identifier, or a string, or...

* Alist is a left parenthesis, followed by
zero or more S-expressions, followed by a
right parenthesis

* An S-expression is an atom or a list
* Example: ()

*AB3)O)(O))

Hello World

(define (helloworld)
;; prints and returns the message.
(printf "Hello World\n"))

Square

> (define (square n)
;; returns square of a numeric argument
(*n n)

> (square 10)

100

REPL

* Lisp and Scheme are interactive and use what
is known as the “read, eval, print loop”
—While true

*Read one expression from the open input
*Evaluate the expression
*Print its returned value

* (define (repl) (print (eval (read))) (repl))

4/10/2012

Built-in Scheme Datatypes

Basic Datatypes The Rest
« Booleans * Bytes & Byte Strings
« Numbers * Keywords
. * Characters
* Strings * Vectors
* Procedures « Hash Tables
* Symbols * Boxes

« Pairs and Lists * Void and Undefined

What is evaluation?

* We evaluate an expression producing a value
—Evaluating “2 + sqrt(100)” produces 12

* Scheme has a set of rules specifying how to
evaluate an s-expression

* We will get to these very soon
—There are only a few rules

—Creating an interpreter for scheme means writing
a program to
* read scheme expressions,
« apply the evaluation rules, and
* print the result

Lisp: Tand NIL

Since 1958, Lisp has used two special symbols:
NILand T

NIL is the name of the empty list, ()

As a boolean, NIL means “false”

T is usually used to mean “true,” but...

...anything that isn’t NIL is “true”

NIL is both an atom and a list
—it’s defined this way, so just accept it

Scheme: #t, #f, and ()

* Scheme cleaned this up a bit

* Scheme’s boolean datatype includes #t and #f
* #t is a special symbol that represents true

* #f represents false

* In practice, anything that’s not #f is true

* Booleans evaluate to themselves

* Scheme represents empty lists as the literal ()
which is also the value of the symbol null
—(define null ()

Numbers

* Numbers evaluate to themselves

* Scheme has a rich collection of number
types including the following

—Integers (42)

—Floats (3.14)

—Rationals: (/1 3) =>1/3

—Complex numbers: (* 2+2i -2-2i) => 0-8i

—Infinite precision integers: (expt 99 99) => 369...99
(contains 198 digits!)

—And more...

Strings
« Strings are fixed length arrays of characters
_"fo0"
—"foo bar\n"
_||foo \||bar\||”

* Strings are immutable
* Strings evaluate to themselves

4/10/2012

Function calls and data

A function call is written as a list

— the first element is the name of the function
— remaining elements are the arguments
Example: (F AB)

— calls function F with arguments A and B

Data is written as atoms or lists

Example: (F A B) is a list of three elements
— Do you see a problem here?

Predicates

* A predicate (in any computer language) is a
function that returns a boolean value

¢ In Lisp and Scheme predicates returns
either #f or often something else that
might be useful as a true value
— The member function returns true iff it’s

1stargument is in the list that is it’s 2nd

— (member 3 (list123456))=>(3456))

Simple evaluation rules

* Numbers evaluate to themselves

* #t and #f evaluate to themselves

* Any other atoms (e.g., foo) represents
variables and evaluate to their values

* A list of n elements represents a function call
—e.g., (add1 a)

—Evaluate each of the n elements (e.g., add1->a
procedure, a->100)

—Apply function to arguments and return value

(define a 100)

Example

* define is a special form
that doesn’t follow the

>a

regular evaluation rules
100

* Scheme only has a few of
>addl these
#<procedure:add1> * Define doesn’t evaluate its
> (add1 (add1 a)) first argument
102 * ifis another special form
>(if(>a0) (+al)(-al)) * What do you think is

103

special about if?

Quoting
Is(FAB)acalltoF, orisitjust data?
All literal data must be quoted (atoms, too)
(QUOTE (F A B)) is the list (F A B)
—QUOTE is not a function, but a special form

— Arguments to a special form aren’t evaluated
or are evaluated in some special manner

« '(F A B) is another way to quote data
—There is just one single quote at the beginning
— It quotes one S-expression

Symbols
* Symbols are atomic names
> 'foo
foo

> (symbol? ‘foo)
#t
* Symbols are used as names of variables and
procedures
—(define foo 100)
—(define (fact x) (if (=x 1) 1 (* x (fact (- x 1)))))

CAR, CDR and CONS

* These names date back to 1958

—Before lower case characters were invented
CONS = CONStruct

CAR and CDR were each implemented by a
single hardware instruction on the IBM 704
—CAR: Contents of Address Register

—CDR: Contents of Decrement Register

Basic Functions

* car returns the head of a list
(car(123))=>1
(first (1 2 3)) => 1 ; for people who don't like car
* cdr returns the tail of a list
(cdr(123))=>(23)
(rest (12 3)) => (2 3) ;; for people who don't like cdr
* cons constructs a new listbeginning with it’s first arg
and continuing with it’s second

(cons123))=>(123)

More Basic Functions

* eq? compares two atoms for equality

(eq? ‘foo ‘foo) => #t

(eq? ‘foo ‘bar) => #f

Note: eq? is just a pointer test, like Java’s ‘=
e equal? tests two list structures

(equal? ‘(abc)‘(abc)) =#t

(equal? ‘(a b) ‘((a b))) => #f

Note: equal? compares two complex objects,

like a Java object’s equal method

Comment on Names

* Lisp used the convention (inconsistently) of
ending predicate functions with a P

—E.g., MEMBERP, EVENP

Scheme uses the more sensible convention to
use ? at the end such functions

—e.g., eq?, even?

Even Scheme is not completely consistent in
using this convention

—E.g., the test for list membership is member and not
member?

4/10/2012

Other useful Functions

e (null? S) tests if S is the empty list
—(null? ‘(12 3) =>#f

—(null? () => #t

(list? S) tests if Sis a list

—(list? ‘(1 2 3)) =>#t

—(list? 3) => #f

More useful Functions

list makes a list of its arguments
—(list'A'(BC)'D)=>(A(BC)D)

— (list (cdr '(A B)) 'C) => ((B) C)

Note that the parenthesized prefix notation makes it

easy to define functions that take a varying number of
arguments.

— (list ‘A) => (A)
— (list) => ()
Lisp dialects use this flexibility a lot

4/10/2012

If then else

* In addition to cond, Lisp and Scheme have an
if special form that does much the same thing
(if <test> <then> <else>)

— (if (< 4 6) ‘foo ‘bar) => foo

— (if (< 4 2) ‘foo ‘bar) => bar

— (define (minx y) (if (<xy) xy))

In Lisp, the else clause is optional and defaults
to null, but in Scheme it’s required

More useful Functions

* append concatenates two lists
— (append (12)(34))=>(1234)
— (append (A B) '((X) Y)) => (A B (X) Y)
— (append () (123))=>(123)

* append takes any number of arguments
— (append ‘(1) (23) (456))=>(123456)
— (append (12))=>(12)
— (append) => null

— (append null null null) => null

Cond

cond (short for conditional) is a special form
that implements the if ... then ... elseif ... then ...
elseif ... then ... control structure

(COND aclause
‘(conditionl resultl){
(condition2 result2)

(#t resultN))

Cond Example

(cond ((not (number? x)) (if (not (number? x))
0) 0
((<x0) 0) (if (<x 0)
((<x10) x) 0
(#t 10)) (if (< x 10)
X
10)))

Cond is superfluous, but loved

* Any cond can be written using nested “if’
expressions

* But once you get used to the full form, it’s very
useful

—It subsumes the conditional and switch statements

* One example:

* Note: If no clause is
(cond ((testl a) selected, then cond
(do1 a)(do2 a)(valuel a)) returns #<void>
« It’s as if every cond
((test2 a))) had a final clause like
(# (void))

Defining Functions
(DEFINE (function_name . parameter_list)
. function_body)
Examples:

;; Square a number
(define (square n) (* n n))

;; absolute difference between two numbers.
(define (diff x y) (if (>xy) (-xy) (-yx)))

Example: member

* We can also define it using if:
(define (member x Ist)
(if (null> Ist)
null
(if (equal x (car Ist))
list
(member x (cdr Ist)))))

* We could also define it using not, and & or
(define (member x Ist)
(and (not (null Ist))
(or (equal x (car Ist))
(member x (cdr Ist)))))

Example: member

member is a built-in function, but here’s how
we’d define it

(define (member x Ist)
;; X is a top-level member of a list if it is the first
;; element or if it is a member of the rest of the list
(cond ((null? Ist) #f)
((equal? x (car Ist)) list)
(#t (member x (cdr Ist)))))

Append concatenate lists

> (append '(12)'(abc))

(12abc) « Lists are immutable
> (append '(12) () ° Appeint: constructs
12) new lists

> (append ‘() '()'())

()

> (append '(12 3))

(123)

> (append '(12)'(23)'(45))
(122345)

> (append)

()

Example: define append

* (append‘(123)‘(ab))=>(123ab)
* Here are two versions, using if and cond:

(define (append 11 12)
(if (null?11)
12
(cons (car 11) (append (cdr 11) 12)))))

(define (append 11 12)
(cond ((null? 11) 12)
(#t (cons (car I1) (append (cdr 11) 12)))))

4/10/2012

http://en.wikipedia.org/wiki/Conditional_(programming)
http://en.wikipedia.org/wiki/Switch_statement

Example: SETS

« Implement sets and set operations: union,
intersection, difference

«Represent a set as a list and implement the
operations to enforce uniqueness of membership
« Here is set-add

(define (set-add thing set)
;; returns a set formed by adding THING to set SET

(if (member thing set) set (cons thing set)))

Example: SETS

« Union is only slightly more complicated
(define (set-union S1 S2)
;; returns the union of sets S1 and S2
(if (null? S1)
S2
(add-set (car S1)
(set-union (cdr S1) S2)))

Example: SETS

Intersection is also simple

(define (set-intersection S1 S2)
;; returns the intersection of sets S1 and S2
(cond ((null? s1) nil)
((member (car s1) s2)
(set-intersection (cdr s1) s2))
(#t (cons (cars1)
(set-intersection (cdr s1) s2)))))

Reverse

* Reverse is another common operation on Lists

* It reverses the “top-level” elements of a list
— Speaking more carefully, it constructs a new list equal to it’s
argument with the top level elements in reverse order.
* (reverse‘(ab(cd)e))=>(e(cd)ba)
(define (reverse L)
(if (null? L)
null
(append (reverse (cdr L)) (list (car L))))

Programs on file

* Use any text editor to create your program

* Save your program on a file with the extension
.SS

* (Load “foo.ss”) loads foo.ss
* (load “foo.bar”) loads foo.bar

* Each s-exprssion in the file is read and
evaluated.

Comments

* In Lisp, a comment begins with a semicolon (;)
and continues to the end of the line
e Conventions for;;; and ;; and ;
* Function document strings:
(defun square (x)
“(square x) returns x*x”
(*xx))

4/10/2012

