
1

Functional
Programming in
Scheme and Lisp

http://www.lisperati.com/landoflisp/

Overview

• In a functional programming language,
functions are first class objects

• You can create them, put them in data
structures, compose them, specialize them,
apply them to arguments, etc.

• We’ll look at how functional programming
things are done in Lisp

eval

• Remember: Lisp code is just an s-expression

• You can call Lisp’s evaluation process with the
eval function

> (define s (list 'cadr ' ' (one two three)))

> s

(cadr ' (one two three))

> (eval s)

two

 > (eval (list 'cdr (car '((quote (a . b)) c))))

b

apply

• apply takes a function & a list of arguments for it &
returns the result of applying the function to them

> (apply + ' (1 2 3))

6

• It can be given any number of arguments, so long as
the last is a list:

> (apply + 1 2 ' (3 4 5))

15

• A simple version of apply could be written as

(define (apply f list) (eval (cons f list)))

lambda

• The define special form creates a function and
gives it a name

• However, functions don’t have to have names,
and we don’t need to use define to create
them

• The primitive way to create functions is to use
the lambda special form

• These are often called lambda expressions, e.g.

(lambda (x) (+ x 1))

http://www.lisperati.com/landoflisp/
http://www.lisperati.com/landoflisp/

2

lambda expression

• A lambda expression is a list of the symbol
lambda, followed by a list of parameters, fol-
lowed by a body of one or more expressions:

> (define f (lambda (x) (+ x 2)))

> f

#<proceedure:f>

> (f 100)

102

> ((lambda (x) (+ x 2)) 100

102

Lambda expression
• lambda is a special form
• When evaluated, it creates a function and

returns a reference to it
• The function does not have a name
• A lambda expression can be the first ele-

ment of a function call:
> ((lambda (x) (+ x 100)) 1)
101

• Other languages like python and javascript
have adopted the idea

define vs. define

(define (add2 x)
 (+ x 2))

(define add2
(lambda (x) (+ x 2)))

(define add2 #f)

(set! add2
 (lambda (x) (+ x 2)))

• The define special form
comes in two varieties

• The three expressions to
the right are entirely
equivalent

• The first define form is
just more familiar and
convenient when defining
a function

Functions as objects

• While many PLs allow functions as
arguments, nameless lambda functions
add flexibility

> (sort '((a 100)(b 10)(c 50))
 (lambda (x y) (< (second x) (second y))))

((b 10) (c 50) (a 100))

• There is no need to give the function a
name

lambdas in other languages

• Lambda expressions are found in many
modern languages, e.g., Python:

>>> f = lambda x,y: x*x + y

>>> f

<function <lambda> at 0x10048a230>

>>> f(2, 3)

7

>>> (lambda x,y: x*x+y)(2,3)

7

Mapping functions
• Lisp & Scheme have several mapping functions
• map (mapcar in Lisp) is the most useful
• It takes a function and ≥1 lists and returns a list

of the results of applying the function to
elements taken from each list

> (map abs '(3 -4 2 -5 -6))
(3 4 2 5 6)
> (map + ‘(1 2 3) (4 5 6))
(5 7 9)
> (map ‘(1 2 3) ‘(4 5 6) ‘(7 8 9))
(12 15 18)

3

More map examples

 > (map cons '(a b c) '(1 2 3))
((a . 1) (b . 2) (c . 3))

> (map (lambda (x) (+ x 10)) ‘(1 2 3))
(11 12 13)

> (map + '(1 2 3) '(4 5))

map: all lists must have same size; arguments were:
#<procedure:+> (1 2 3) (4 5)
=== context ===
/Applications/PLT/collects/scheme/private/misc.ss:7
4:7

Defining map

Defining a simple “one argument” version of
map is easy

(define (map1 func list)

 (if (null? list)

 null

 (cons (func (first list))

 (map1 func (rest list)))))

Define Lisp’s every and some

• every and some take a predicate and one or
more sequences

• When given just one sequence, they test
whether the elements satisfy the predicate
> (every odd? ‘(1 3 5))
#t
> (some even? ‘(1 2 3))
#t

• If given >1 sequences, the predicate takes as
many args as there are sequences and args
are drawn one at a time from them:
> (every > ‘(1 3 5) ‘(0 2 4))
#t

Defining every is easy

(define (every1 f list)

 ;; note the use of the and function

 (if (null? list)

 #t

 (and (f (first list))

 (every1 f (rest list)))))

Define some similarly

(define (some1 f list)

 (if (null? list)

 #f

 (or (f (first list))

 (some1 f (rest list)))))

Will this work?

• You can prove that P is true for some list ele-
ment by showing that it isn’t false for every one

• Will this work?

> (define (some1 f list)

 (not (every1 (lambda (x) (not (f x))) list)))

> (some1 odd? '(2 4 6 7 8))

#t

> (some1 (lambda (x) (> x 10)) '(4 8 10 12))

#t

4

filter

(filter <f> <list>) returns a list of the elements of
<list> which satisfy the predicate <f>

 > (filter odd? ‘(0 1 2 3 4 5))

 (1 3 5)

 > (filter (lambda (x) (> x 98.6))

 ‘(101.1 98.6 98.1 99.4 102.2))

 (101.1 99.4 102.2)

Example: filter

(define (filter1 func list)

 ;; returns a list of elements of list where funct is true

 (cond ((null? list) null)

 ((func (first list))

 (cons (first list) (filter1 func (rest list))))

 (#t (filter1 func (rest list)))))

> (filter1 even? ‘(1 2 3 4 5 6 7))

(2 4 6)

Example: filter
• Define integers as a function that returns a

list of integers between a min and max

(define (integers min max)
 (if (> min max)
 null
 (cons min (integers (add1 min) max))))

• Do prime? as a predicate that is true of
prime numbers and false otherwise

> (filter prime? (integers 2 20))
(2 3 5 7 11 13 17 19)

Here’s another pattern

• We often want to do something like sum the
elements of a sequence

(define (sum-list l)

(if (null? l)

 0

 (+ (first l) (sum-list (rest l)))))

• Other times we want their product
(define (multiply-list l)

(if (null? l)

 1

 (* (first l) (multiply-list (rest l)))))

Here’s another pattern

• We often want to do something like sum the
elements of a sequence

(define (sum-list l)

(if (null? l)

 0

 (+ (first l) (sum-list (rest l)))))

• Other times we want their product
(define (multiply-list l)

(if (null? l)

 1

 (* (first l) (multiply-list (rest l)))))

Example: reduce

• Reduce takes (i) a function, (ii) a final value
and (iii) a list of arguments

Reduce of +, 0, (v1 v2 v3 … vn) is just

V1 + V2 + V3 + … Vn + 0

• In Scheme/Lisp notation:

> (reduce + 0 ‘(1 2 3 4 5))

15

(reduce * 1 ‘(1 2 3 4 5))

120

5

Example: reduce

(define (reduce function final list)

 (if (null? list)

 final

 (function

 (first list)

 (reduce function final (rest list)))))

Using reduce (define (sum-list list)

 ;; returns the sum of the list elements

 (reduce + 0 list))

(define (mul-list list)

 ;; returns the sum of the list elements

 (reduce * 1 list))

(define (copy-list list)

 ;; copies the top level of a list

 (reduce cons ‘() list))

(define (append-list list)

 ;; appends all of the sublists in a list

 (reduce append ‘() list))

The roots of mapReduce

• MapReduce is a software frame-
work developed by Google for
parallel computation on large
datasets on computer clusters

• It’s become an important way to
exploit parallel computing using
conventional programming languages and techniques.

• See Apache’s Hadoop for an
open source version

• The framework was inspired by functional
programming’s map, reduce & side-effect free programs

Function composition

• Math notation: gh is a composition of func-
tions g and h

• If f=gh then f(x)=g(h(x)

• Composing functions is easy in Scheme

 > compose
#<procedure:compose>
> (define (sq x) (* x x))
> (define (dub x) (* x 2))
> (sq (dub 10))
400
> (dub (sq 10))
200

> (define sd (compose sq
dub))
> (sd 10)
400
> ((compose dub sq) 10)
200

Defining compose

• Here’s compose for two functions in Scheme

(define (compose2 f g) (lambda (x) (f (g x))))

• Note that compose calls lambda which returns
a new function that applies f to the result of
applying g to x

• We’ll look at how the variable environments
work to support this in the next topic, closures

• But first, let’s see how to define a general ver-
sion of compose taking any number of args

Functions with any number of args

• Defining functions that takes any number of
arguments is easy in Scheme

(define (foo . args) (printf "My args: ~a\n"
args)))

• If the parameter list ends in a symbol as
opposed to null (cf. dotted pair), then it’s value
is the list of the remaining arguments’ values

(define (f x y . more-args) …)

(define (map f . lists) …)

http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/Hadoop
http://en.wikipedia.org/wiki/Function_composition
http://docs.racket-lang.org/reference/Writing.html

6

Compose in Scheme
(define (compose . FS)
 ;; Returns the identity function if no args given
 (if (null? FS)
 (lambda (x) x)
 (lambda (x) ((first FS) ((apply compose (rest FS)) x)))))

; examples

(define (add-a-bang str) (string-append str "!"))

(define givebang
 (compose string->symbol add-a-bang symbol->string))

(givebang 'set) ; ===> set!

; anonymous composition

((compose sqrt negate square) 5) ; ===> 0+5i

A general every

• We can easily re-define other functions to take
more than one argument

(define (every fn . args)

 (cond ((null? args) #f)

 ((null? (first args)) #t)

 ((apply fn (map first args))

 (apply every fn (map rest args)))

 (else #f)))

• (every > ‘(1 2 3) ‘(0 2 3)) => #t

• (every > ‘(1 2 3) ‘(0 20 3)) => #f

Functional Programming Summary

• List is the archetypal functional programming
language

• It treated functions as first-class objects and
uses the same representation for data & code

• The FP paradigm is a good match for many
problems, esp. ones involving reasoning about
or optimizing code or parallel execution

• While no pure FP languages are considered
mainstream, many PLs support a FP style

http://docs.racket-lang.org/reference/strings.html
http://docs.racket-lang.org/reference/strings.html
http://docs.racket-lang.org/reference/strings.html
http://docs.racket-lang.org/reference/symbols.html
http://docs.racket-lang.org/reference/symbols.html
http://docs.racket-lang.org/reference/symbols.html
http://docs.racket-lang.org/reference/symbols.html
http://docs.racket-lang.org/reference/symbols.html
http://docs.racket-lang.org/reference/symbols.html

