
4/26/2012

1

Curry

A Tasty dish? Haskell Curry!

Curried Functions

• Currying is a functional programming tech-
nique that takes a function of N arguments
and produces a related one where some of
the arguments are fixed

• In Scheme

– (define add1 (curry + 1))

– (define double (curry * 2))

A tasty dish?

• Currying was named after the Mathematical
logician Haskell Curry (1900-1982)

• Curry worked on combinatory logic …

• A technique that eliminates the need for
variables in mathematical logic …

• and hence computer programming!

– At least in theory

• The functional programming language Haskell
is also named in honor of Haskell Curry

Functions in Haskell

• In Haskell we can define g as a function that takes
two arguments of types a and b and returns a
value of type c like this:

– g :: (a, b) -> c

• We can let f be the curried form of g by

– f = curry g

• The function f now has the signature

– f :: a -> b -> c

• f takes an arg of type a & returns a function that
takes an arg of type b & returns a value of type c

Functions in Haskell

•All functions in Haskell are curried, i.e., all
Haskell functions take just single arguments.

•This is mostly hidden in notation, and is not
apparent to a new Haskeller

•Let's take the function div :: Int -> Int -> Int which
performs integer division

•The expression div 11 2 evaluates to 5

•But it's a two-part process

–div 11 is evaled & returns a function of type Int -> Int

–That function is applied to the value 2, yielding 5

Currying in Scheme

• Scheme has an explicit built in function, curry,
that takes a function and some of its
arguments and returns a curried function

• For example:

– (define add1 (curry + 1))

– (define double (curry * 2))

• We could define this easily as:

(define (curry fun . args)

 (lambda x (apply fun (append args x))))

http://en.wikipedia.org/wiki/Haskell_Curry
http://en.wikipedia.org/wiki/Combinatory_logic
http://en.wikipedia.org/wiki/Mathematical_logic
http://www.haskell.org/
http://haskell.org/ghc/docs/latest/html/libraries/base/Prelude.html%23v:curry
http://haskell.org/ghc/docs/latest/html/libraries/base/Prelude.html%23v:div
http://haskell.org/ghc/docs/latest/html/libraries/base/Prelude.html%23t:Int
http://haskell.org/ghc/docs/latest/html/libraries/base/Prelude.html%23t:Int
http://haskell.org/ghc/docs/latest/html/libraries/base/Prelude.html%23t:Int
http://haskell.org/ghc/docs/latest/html/libraries/base/Prelude.html%23v:div
http://haskell.org/ghc/docs/latest/html/libraries/base/Prelude.html%23v:div
http://haskell.org/ghc/docs/latest/html/libraries/base/Prelude.html%23t:Int
http://haskell.org/ghc/docs/latest/html/libraries/base/Prelude.html%23t:Int

4/26/2012

2

Note on lambda syntax

• (lambda X (foo X)) is a way to define a lambda
expression that takes any number of
arguments

• In this case X is bound to the list of the
argument values, e.g.:
> (define f (lambda x (print x)))

> f

#<procedure:f>

> (f 1 2 3 4 5)

(1 2 3 4 5)

>

Simple example (a)

• Compare two lists of numbers pair wise:

(apply and (map < ‘(0 1 2 3) '(5 6 7 8)))

• Note that (map < ‘(0 1 2 3) '(5 6 7 8)) evaluates
to the list (#t #t #t #t)

• Applying and to this produces the answer, #t

Simple example (b)

• Is every number in a list positive?

(apply and (map < 0 ' (5 6 7 8)))

• This is a nice idea, but will not work
map: expects type <proper list> as 2nd argument, given: 0; other

arguments were: #<procedure:<> (5 6 7 8)

 === context ===

/Applications/PLT/collects/scheme/private/misc.ss:74:7

• Map takes a function and lists for each of its
arguments

Simple example (c)

• Is every number in a list positive?

• Use (lambda (x) (< 0 x)) as the function

(apply and (map (lambda (x) (< 0 x)) '(5 6 7 8)))

• This works nicely and gives the right answer

• What we did was to use a general purpose,
two-argument comparison function (?<?) to
make a narrower one-argument one (0<?)

Simple example (d)

• Here’s where curry helps

(curry < 0) ≈ (lambda (x) (< 0 x))

• So this does what we want

(apply and (map (curry < 0) '(5 6 7 8)))

– Currying < with 0 actually produces equivalent of:

(lambda x (apply < (append ‘(0) x)))

– So (curry < 0) takes one or more args, e.g.

((curry < 0) 10 20 30) => #t

((curry < 0) 10 20 5) => #f

[But ‘< taking more than 2 args makes example a toy]

A real world example

• I wanted to adapt a Lisp example by Google’s
Peter Norvig of a simple program that
generates random sentences from a context
free grammar

• It was written to take the grammar and start
symbol as global variables 

• I wanted to make this a parameter, but it made
the code more complex  

• Scheme’s curry helped solve this!

http://norvig.com/

4/26/2012

3

cfg1.ss
#lang scheme

;;; This is a simple …

(define grammar

 '((S -> (NP VP) (NP VP) (NP VP) (NP VP) (S CONJ S))

 (NP -> (ARTICLE ADJS? NOUN PP?))

 (VP -> (VERB NP) (VERB NP) (VERB NP) VERB)

 (ARTICLE -> the the the a a a one every)

 (NOUN -> man ball woman table penguin student book
 dog worm computer robot)
…
 (PP -> (PREP NP))

 (PP? -> () () () () PP)

))

scheme> scheme

Welcome to MzScheme v4.2.4 …

> (require "cfg1.ss")

> (generate 'S)

(a woman took every mysterious ball)

> (generate 'S)

(a blue man liked the worm over a mysterious woman)

> (generate 'S)

(the large computer liked the dog in every mysterious student in the
mysterious dog)

> (generate ‘NP)

(a worm under every mysterious blue penguin)

> (generate ‘NP)

(the book with a large large dog)

cfg1.ss
session

cfg1.ss
#lang scheme

;;; This is a simple …

(define grammar

 '((S -> (NP VP) (NP VP) (NP VP) (NP VP) (S CONJ S))

 (NP -> (ARTICLE ADJS? NOUN PP?))

 (VP -> (VERB NP) (VERB NP) (VERB NP) VERB)

 (ARTICLE -> the the the a a a one every)

 (NOUN -> man ball woman table penguin student book
 dog worm computer robot)
…
 (PP -> (PREP NP))

 (PP? -> () () () () PP)

))

Five possible rewrites for a S:
80% of the time it => NP VP and
20% of the time it is a conjoined
sentence, S CONJ S

Terminal symbols
(e.g, the, a) are
recognized by
virtue of not
heading a
grammar rule.

() is like ε in a rule, so
80% of the time a PP?
produces nothing and
20% a PP.

(define (generate phrase)

 ;; generate a random sentence or phrase from grammar

 (cond ((list? phrase)

 (apply append (map generate phrase)))

 ((non-terminal? phrase)

 (generate (random-element (rewrites phrase))))

 (else (list phrase))))

(define (non-terminal? x)

 ;; True iff x is a on-terminal in grammar

 (assoc x grammar))

(define (rewrites non-terminal)

 ;; Return a list of the possible rewrites for non-terminal in grammar

 (rest (rest (assoc non-terminal grammar))))

(define (random-element list)

 ;; returns a random top-level element from list

 (list-ref list (random (length list))))

cfg1.ss

If phrase is a list, like (NP VP),
then map generate over it
and append the results

If a non-terminal, select
a random rewrite and
apply generate to it.

It’s a terminal, so just
return a list with it as
the only element.

Parameterizing generate

• Let’s change the package to not use global
variables for grammar

• The generate function will take another
parameter for the grammar and also pass it to
non-terminal? and rewrites

• While we are at it, we’ll make both param-
eters to generate optional with appropriate
defaults

> (load "cfg2.ss")

> (generate)

(a table liked the blue robot)
> (generate grammar 'NP)

(the blue dog with a robot)

> (define g2 '((S -> (a S b) (a S b) (a S b) ())))

> (generate g2)

(a a a a a a b b b b b b)

> (generate g2)

(a a a a a a a a a a a b b b b b b b b b b b)

> (generate g2)

()

> (generate g2)

(a a b b)

cfg2.ss
session

http://www.csee.umbc.edu/courses/331/fall10/code/scheme/cfg1.ss
http://www.csee.umbc.edu/courses/331/fall10/code/scheme/cfg1.ss
http://www.csee.umbc.edu/courses/331/fall10/code/scheme/cfg1.ss
http://docs.plt-scheme.org/reference/pairs.html?q=assoc
http://docs.racket-lang.org/reference/pairs.html
http://docs.racket-lang.org/reference/pairs.html
http://docs.racket-lang.org/reference/pairs.html
http://docs.plt-scheme.org/reference/numbers.html?q=random&q=assoc
http://www.csee.umbc.edu/courses/331/fall10/code/scheme/cfg1.ss
http://www.csee.umbc.edu/courses/331/fall10/code/scheme/cfg2.ss

4/26/2012

4

cfg2.ss
(define default-grammar '((S -> (NP VP) (NP VP) (NP VP) (NP VP)) ...))

(define default-start 'S)

(define (generate (grammar default-grammar) (phrase default-start))

 ;; generate a random sentence or phrase from grammar

 (cond ((list? phrase)

 (apply append (map generate phrase)))

 ((non-terminal? phrase grammar)

 (generate grammar (random-element (rewrites phrase grammar))))

 (else (list phrase)))))

(define (non-terminal? x grammar)

 ;; True iff x is a on-terminal in grammar

 (assoc x grammar))

(define (rewrites non-terminal grammar)

 ;; Return a list of the possible rewrites for non-terminal in grammar

 (rest (rest (assoc non-terminal grammar))))

Global variables
define defaults

optional
parameters

Pass value of
grammar to
subroutines

Subroutines
take new
parameter

cfg2.ss
(define default-grammar '((S -> (NP VP) (NP VP) (NP VP) (NP VP)) ...))

(define default-start 'S)

(define (generate (grammar default-grammar) (phrase default-start))

 ;; generate a random sentence or phrase from grammar

 (cond ((list? phrase)

 (apply append (map generate phrase)))

 ((non-terminal? phrase grammar)

 (generate grammar (random-element (rewrites phrase grammar))))

 (else (list phrase)))))

(define (non-terminal? x grammar)

 ;; True iff x is a on-terminal in grammar

 (assoc x grammar))

(define (rewrites non-terminal grammar)

 ;; Return a list of the possible rewrites for non-terminal in grammar

 (rest (rest (assoc non-terminal grammar))))

generate takes 2 args – we
want the 1st to be grammar’s
current value and the 2nd to
come from the list

cfg2.ss
(define default-grammar '((S -> (NP VP) (NP VP) (NP VP) (NP VP)) ...))

(define default-start 'S)

(define (generate (grammar default-grammar) (phrase default-start))

 ;; generate a random sentence or phrase from grammar

 (cond ((list? phrase)

 (apply append (map (curry generate grammar) phrase)))

 ((non-terminal? phrase grammar)

 (generate grammar (random-element (rewrites phrase grammar))))

 (else (list phrase)))))

(define (non-terminal? x grammar)

 ;; True iff x is a on-terminal in grammar

 (assoc x grammar))

(define (rewrites non-terminal grammar)

 ;; Return a list of the possible rewrites for non-terminal in grammar

 (rest (rest (assoc non-terminal grammar))))

Curried functions

• Curried functions have lots of applictions in
programming language theory

• The curry operator is also a neat trick in our
functional programming toolbox

• You can add them to Python and other
languages, if the underlying language has the
right support

http://www.csee.umbc.edu/courses/331/fall10/code/scheme/cfg2.ss
http://www.csee.umbc.edu/courses/331/fall10/code/scheme/cfg2.ss
http://www.csee.umbc.edu/courses/331/fall10/code/scheme/cfg2.ss

