
3/15/2012

1

Yacc
Yet Another

Compiler Compiler

Some material adapted from slides by Andy D. Pimentel

LEX and YACC work as a team

YACC

yyparse()

Input programs

12 + 26

LEX

yylex()

How to work ?

LEX and YACC work as a team

YACC

yyparse()

Input programs

12 + 26

LEX

yylex()

call yylex()

[0-9]+

next token

is NUM

NUM ‘+’ NUM

Availability

• lex, yacc on most UNIX systems

• bison: a yacc replacement from
GNU

• flex: fast lexical analyzer

• BSD yacc

• Windows/MS-DOS versions exist

YACC’s Basic Operational Sequence

a.out

File containing desired
grammar in YACC format

YACC program

C source program created by YACC

C compiler

Executable program that will parse
grammar given in gram.y

gram.y

yacc

y.tab.c

cc

or gcc

YACC File Format

Definitions

%%

Rules

%%

Supplementary Code

The identical LEX

format was taken from

this...

3/15/2012

2

Rules Section

A context free grammar, e.g.:

 expr : expr '+' term

 | term

 ;

 term : term '*' factor

 | factor

 ;

 factor : '(' expr ')'

 | ID

 | NUM

 ;

Definitions section example

%{

#include <stdio.h>

#include <stdlib.h>

%}

%token ID NUM

%start expr

This is called a
terminal

The start symbol
(non-terminal)

Some details

• LEX produces a function called yylex()

• YACC produces a function called yyparse()

• yyparse() expects to be able to call yylex()

• How to get yylex()?

• Write your own!

• If you don't want to write your own: use lex!

If you wanted to write your own…
int yylex()

{

 if(it's a num)

 return NUM;

 else if(it's an id)

 return ID;

 else if(parsing is done)

 return 0;

 else if(it's an error)

 return -1;

}

Semantic actions

expr : expr '+' term { $$ = $1 + $3; }

 | term { $$ = $1; }

 ;

term : term '*' factor { $$ = $1 * $3; }

 | factor { $$ = $1; }

 ;

factor : '(' expr ')' { $$ = $2; }

 | ID

 | NUM

 ;

Semantic actions

expr : expr '+' term { $$ = $1 + $3; }

 | term { $$ = $1; }

 ;

term : term '*' factor { $$ = $1 * $3; }

 | factor { $$ = $1; }

 ;

factor : '(' expr ')' { $$ = $2; }

 | ID

 | NUM

 ;

3/15/2012

3

Semantic actions (cont’d)

expr : expr '+' term { $$ = $1 + $3; }

 | term { $$ = $1; }

 ;

term : term '*' factor { $$ = $1 * $3; }

 | factor { $$ = $1; }

 ;

factor : '(' expr ')' { $$ = $2; }

 | ID

 | NUM

 ;

$1

Semantic actions (cont’d)

expr : expr '+' term { $$ = $1 + $3; }

 | term { $$ = $1; }

 ;

term : term '*' factor { $$ = $1 * $3; }

 | factor { $$ = $1; }

 ;

factor : '(' expr ')' { $$ = $2; }

 | ID

 | NUM

 ;

$2

Semantic actions (cont’d)

expr : expr '+' term { $$ = $1 + $3; }

 | term { $$ = $1; }

 ;

term : term '*' factor { $$ = $1 * $3; }

 | factor { $$ = $1; }

 ;

factor : '(' expr ')' { $$ = $2; }

 | ID

 | NUM

 ;

$3

Default: $$ = $1;

Precedence / Association

1. 1-2-3 = (1-2)-3? or 1-(2-3)?

 Define ‘-’ operator is left-association.

2. 1-2*3 = 1-(2*3)

 Define “*” operator is precedent to “-” operator

expr: expr '-' expr

 | expr '*' expr

 | expr '<' expr

 | '(' expr ')'

 ...

 ;

(1) 1 – 2 - 3

(2) 1 – 2 * 3

Precedence / Association

expr : expr ‘+’ expr { $$ = $1 + $3; }

 | expr ‘-’ expr { $$ = $1 - $3; }

 | expr ‘*’ expr { $$ = $1 * $3; }

 | expr ‘/’ expr { if($3==0)

 yyerror(“divide 0”);

 else

 $$ = $1 / $3;

 }

 | ‘-’ expr %prec UMINUS {$$ = -$2; }

%left '+' '-'

%left '*' '/'

%noassoc UMINUS

Precedence / Association

%right ‘=‘

%left '<' '>' NE LE GE

%left '+' '-‘

%left '*' '/'

highest precedence

3/15/2012

4

Getting YACC & LEX to work together

cc/

gcc

lex.yy.c

y.tab.c

a.out

Building Example

• Suppose you have a lex file called scanner.l and
a yacc file called decl.y and want parser

• Steps to build...

 yacc -d decl.y

 lex scanner.l

 gcc -c lex.yy.c y.tab.c

 gcc -o parser lex.yy.o y.tab.o -ll

Note: scanner should include in the definitions
section: #include "y.tab.h"

YACC

• Rules may be recursive

• Rules may be ambiguous

• Uses bottom-up Shift/Reduce parsing
– Get a token

– Push onto stack

– Can it be reduced (How do we know?)
• If yes: Reduce using a rule

• If no: Get another token

• YACC can’t look ahead > 1 token

Shift and reducing

stmt: stmt ‘;’ stmt

 | NAME ‘=‘ exp

exp: exp ‘+’ exp

 | exp ‘-’ exp

 | NAME

 | NUMBER

input:

a = 7; b = 3 + a + 2

stack:

<empty>

Shift and reducing

stmt: stmt ‘;’ stmt

 | NAME ‘=‘ exp

exp: exp ‘+’ exp

 | exp ‘-’ exp

 | NAME

 | NUMBER
input:

= 7; b = 3 + a + 2

stack:

NAME

SHIFT!

Shift and reducing

stmt: stmt ‘;’ stmt

 | NAME ‘=‘ exp

exp: exp ‘+’ exp

 | exp ‘-’ exp

 | NAME

 | NUMBER

input:

7; b = 3 + a + 2

stack:

NAME ‘=‘

SHIFT!

3/15/2012

5

Shift and reducing

stmt: stmt ‘;’ stmt

 | NAME ‘=‘ exp

exp: exp ‘+’ exp

 | exp ‘-’ exp

 | NAME

 | NUMBER
input:

; b = 3 + a + 2

stack:

NAME ‘=‘ 7

SHIFT!

Shift and reducing

stmt: stmt ‘;’ stmt

 | NAME ‘=‘ exp

exp: exp ‘+’ exp

 | exp ‘-’ exp

 | NAME

 | NUMBER

input:

; b = 3 + a + 2

stack:

NAME ‘=‘ exp

REDUCE!

Shift and reducing

stmt: stmt ‘;’ stmt

 | NAME ‘=‘ exp

exp: exp ‘+’ exp

 | exp ‘-’ exp

 | NAME

 | NUMBER
input:

; b = 3 + a + 2

stack:

stmt

REDUCE!

Shift and reducing

stmt: stmt ‘;’ stmt

 | NAME ‘=‘ exp

exp: exp ‘+’ exp

 | exp ‘-’ exp

 | NAME

 | NUMBER
input:

b = 3 + a + 2

stack:

stmt ‘;’

SHIFT!

Shift and reducing

stmt: stmt ‘;’ stmt

 | NAME ‘=‘ exp

exp: exp ‘+’ exp

 | exp ‘-’ exp

 | NAME

 | NUMBER input:

= 3 + a + 2

stack:

stmt ‘;’ NAME

SHIFT!

Shift and reducing

stmt: stmt ‘;’ stmt

 | NAME ‘=‘ exp

exp: exp ‘+’ exp

 | exp ‘-’ exp

 | NAME

 | NUMBER input:

3 + a + 2

stack:

stmt ‘;’ NAME ‘=‘

SHIFT!

3/15/2012

6

Shift and reducing

stmt: stmt ‘;’ stmt

 | NAME ‘=‘ exp

exp: exp ‘+’ exp

 | exp ‘-’ exp

 | NAME

 | NUMBER
input:

+ a + 2

stack:

stmt ‘;’ NAME ‘=‘ NUMBER

SHIFT!

Shift and reducing

stmt: stmt ‘;’ stmt

 | NAME ‘=‘ exp

exp: exp ‘+’ exp

 | exp ‘-’ exp

 | NAME

 | NUMBER
input:

+ a + 2

stack:

stmt ‘;’ NAME ‘=‘ exp

REDUCE!

Shift and reducing

stmt: stmt ‘;’ stmt

 | NAME ‘=‘ exp

exp: exp ‘+’ exp

 | exp ‘-’ exp

 | NAME

 | NUMBER

input:

a + 2

stack:

stmt ‘;’ NAME ‘=‘ exp ‘+’

SHIFT!

Shift and reducing

stmt: stmt ‘;’ stmt

 | NAME ‘=‘ exp

exp: exp ‘+’ exp

 | exp ‘-’ exp

 | NAME

 | NUMBER
input:

+ 2

stack:

stmt ‘;’ NAME ‘=‘ exp ‘+’

NAME

SHIFT!

Shift and reducing

stmt: stmt ‘;’ stmt

 | NAME ‘=‘ exp

exp: exp ‘+’ exp

 | exp ‘-’ exp

 | NAME

 | NUMBER
input:

+ 2

stack:

stmt ‘;’ NAME ‘=‘ exp ‘+’

exp

REDUCE!

Shift and reducing

stmt: stmt ‘;’ stmt

 | NAME ‘=‘ exp

exp: exp ‘+’ exp

 | exp ‘-’ exp

 | NAME

 | NUMBER
input:

+ 2

stack:

stmt ‘;’ NAME ‘=‘ exp

REDUCE!

3/15/2012

7

Shift and reducing

stmt: stmt ‘;’ stmt

 | NAME ‘=‘ exp

exp: exp ‘+’ exp

 | exp ‘-’ exp

 | NAME

 | NUMBER
input:

2

stack:

stmt ‘;’ NAME ‘=‘ exp ‘+’

SHIFT!

Shift and reducing

stmt: stmt ‘;’ stmt

 | NAME ‘=‘ exp

exp: exp ‘+’ exp

 | exp ‘-’ exp

 | NAME

 | NUMBER
input:

<empty>

stack:

stmt ‘;’ NAME ‘=‘ exp ‘+’

NUMBER

SHIFT!

Shift and reducing

stmt: stmt ‘;’ stmt

 | NAME ‘=‘ exp

exp: exp ‘+’ exp

 | exp ‘-’ exp

 | NAME

 | NUMBER input:

<empty>

stack:

stmt ‘;’ NAME ‘=‘ exp ‘+’

exp

REDUCE!

Shift and reducing

stmt: stmt ‘;’ stmt

 | NAME ‘=‘ exp

exp: exp ‘+’ exp

 | exp ‘-’ exp

 | NAME

 | NUMBER
input:

<empty>

stack:

stmt ‘;’ NAME ‘=‘ exp

REDUCE!

Shift and reducing

stmt: stmt ‘;’ stmt

 | NAME ‘=‘ exp

exp: exp ‘+’ exp

 | exp ‘-’ exp

 | NAME

 | NUMBER input:

<empty>

stack:

stmt ‘;’ stmt

REDUCE!

Shift and reducing

stmt: stmt ‘;’ stmt

 | NAME ‘=‘ exp

exp: exp ‘+’ exp

 | exp ‘-’ exp

 | NAME

 | NUMBER
input:

<empty>

stack:

stmt

REDUCE!

3/15/2012

8

Shift and reducing

stmt: stmt ‘;’ stmt

 | NAME ‘=‘ exp

exp: exp ‘+’ exp

 | exp ‘-’ exp

 | NAME

 | NUMBER
input:

<empty>

stack:

stmt

DONE!

IF-ELSE Ambiguity

• Consider following rule:

Following state : IF expr IF expr stmt . ELSE stmt

• Two possible derivations:

IF expr IF expr stmt . ELSE stmt
IF expr IF expr stmt ELSE . stmt
IF expr IF expr stmt ELSE stmt .
IF expr stmt

IF expr IF expr stmt . ELSE stmt
IF expr stmt . ELSE stmt
IF expr stmt ELSE . stmt
IF expr stmt ELSE stmt .

IF-ELSE Ambiguity

• It is a shift/reduce conflict

• YACC will always do shift first

• Solution 1 : re-write grammar

stmt : matched

 | unmatched

 ;

matched: other_stmt

 | IF expr THEN matched ELSE matched

 ;

unmatched: IF expr THEN stmt

 | IF expr THEN matched ELSE unmatched

 ;

• Solution 2:

IF-ELSE Ambiguity

the rule has the same
precedence as token IFX

Shift/Reduce Conflicts

• shift/reduce conflict

– occurs when a grammar is written in such a
way that a decision between shifting and
reducing can not be made.

– e.g.: IF-ELSE ambiguity

• To resolve conflict, YACC will choose to shift

Reduce/Reduce Conflicts

• Reduce/Reduce Conflicts:
 start : expr | stmt
 ;
 expr : CONSTANT;
 stmt : CONSTANT;

• YACC (Bison) resolves conflict by reducing
using rule that is earlier in grammar

• Not good practice to rely on this

• So, modify grammar to eliminate them

3/15/2012

9

Use left recursion in yacc

• Left recursion

• Right recursion

• LR parser prefers left recursion

• LL parser prefers right recursion

• Yacc is a LR parser: use left recursion

list:

 item

 | list ',' item

 ;

list:

 item

 | item ',' list

 ;

