
CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 1

4d

Bottom Up

Parsing

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 2

Motivation

• In the last lecture we looked at a table
driven, top-down parser

–A parser for LL(1) grammars

• In this lecture, we’ll look a a table driven,
bottom up parser

–A parser for LR(1) grammars

• In practice, bottom-up parsing algorithms
are used more widely for a number of
reasons

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 3

Right Sentential Forms

• Recall the definition of a
derivation and a rightmost
derivation

• Each of the lines is a
(right) sentential form

• A form of the parsing
problem is finding the
correct RHS in a right-
sentential form to reduce to
get the previous right-
sentential form in the
derivation

1 E -> E+T

2 E -> T

3 T -> T*F

4 T -> F

5 F -> (E)

6 F -> id

E
E+T
E+T*F
E+T*id
E+F*id
E+id*id
T+id*id
F+id*id
id+id*id

g
en

er
at

io
n

p
arsin

g

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 4

Right Sentential Forms
Consider this example

• We start with id+id*id

• What rules can apply to some
portion of this sequence?

– Only rule 6: F -> id

• Are there more than one way to
apply the rule?

– Yes, three

• Apply it so the result is part of
a “right most derivation”

– If there is a derivation, there is a
right most one

– If we always choose that, we can’t
get into trouble

1 E -> E+T

2 E -> T

3 T -> T*F

4 T -> F

5 F -> (E)

6 F -> id

E

id+id*id

g
en

er
at

io
n

p
arsin

g

F+id*id

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 5

Bottom up parsing

• A bottom up parser looks at a
sentential form and selects a
contiguous sequence of
symbols that matches the
RHS of a grammar rule, and
replaces it with the LHS

• There might be several
choices, as in the
sentential form E+T*F

• Which one should we
choose?

E
E+T
E+T*F
E+T*id
E+F*id
E+id*id
T+id*id
F+id*id
id+id*id

1 E -> E+T

2 E -> T

3 T -> T*F

4 T -> F

5 F -> (E)

6 F -> id

E + T * F
1 3

2 4

p
arsin

g

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 6

Bottom up parsing

•If the wrong one is chosen, it
leads to failure

•E.g.: replacing E+T with E
in E+T*F yields E+F, which
can’t be further reduced
using the given grammar

•The handle of a sentential
form is the RHS that should
be rewritten to yield the next
sentential form in the right
most derivation

error
E*F
E+T*F
E+T*id
E+F*id
E+id*id
T+id*id
F+id*id
id+id*id

1 E -> E+T

2 E -> T

3 T -> T*F

4 T -> F

5 F -> (E)

6 F -> id

p
arsin

g

http://en.wikipedia.org/wiki/Bottom-up_parsing

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 7

Sentential forms
• Think of a sentential form
as one of the entries in a
derivation that begins
with the start symbol and
ends with a legal sentence

• It’s like a sentence but it
may have unexpanded
non-terminals

• We can also think of it
as a parse tree where
some leaves are as
yet unexpanded non-
terminals

1 E -> E+T

2 E -> T

3 T -> T*F

4 T -> F

5 F -> (E)

6 F -> id

E
E+T
E+T*F
E+T*id
E+F*id
E+id*id
T+id*id
F+id*id
id+id*id

g
en

er
at

io
n

p
arsin

g

E + T * id

F

T

E

not yet expanded

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 8

Handles
• A handle of a sentential form is a substring α such that :

– α matches the RHS of some production A -> α ; and

– replacing α by the LHS A represents a step in the
reverse of a rightmost derivation of s.

• For this grammar, the rightmost
derivation for the input abbcde is

S => aABe => aAde => aAbcde => abbcde

• The string aAbcde can be reduced in two ways:

(1) aAbcde => aAde (using rule 2)

(2) aAbcde => aAbcBe (using rule 4)

• But (2) isn’t a rightmost derivation, so Abc is the only handle.

• Note: the string to the right of a handle will only contain
terminals (why?)

1: S -> aABe

2: A -> Abc

3: A -> b

4: B -> d

a A b c d e

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 9

Phrases

• A phrase is a subse-
quence of a sentential
form that is eventually
“reduced” to a single
non-terminal.

• A simple phrase is a
phrase that is reduced in
a single step.

• The handle is the left-
most simple phrase.

E + T * id

F

T

E

For sentential form
E+T*id what are the
•phrases:

•simple phrases:
•handle:

E+T*id,

T*id, id

id

id

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 10

Phrases, simple phrases and handles

• Def: is the handle of the right sentential form =
w if and only if S =>*rm Aw => w

• Def: is a phrase of the right sentential form if and
only if S =>* = 1A 2 =>+ 1 2

• Def: is a simple phrase of the right sentential form
if and only if S =>* = 1A 2 => 1 2

• The handle of a right sentential form is its leftmost
simple phrase

• Given a parse tree, it is now easy to find the handle

• Parsing can be thought of as handle pruning

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 11

Phrases, simple phrases and handles

E
E+T
E+T*F
E+T*id
E+F*id
E+id*id
T+id*id
F+id*id
id+id*id

E -> E+T

E -> T

T -> T*F

T -> F

F -> (E)

F -> id

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 12

On to shift-reduce parsing

• How to do it w/o having a parse tree in front of us?

• Look at a shift-reduce parser - the kind that yacc uses

• A shift-reduce parser has a queue of input tokens & an
initially empty stack. It takes one of 4 possible actions:

– Accept: if the input queue is empty and the start
symbol is the only thing on the stack

– Reduce: if there is a handle on the top of the stack,
pop it off and replace it with the rule’s RHS

– Shift: push the next input token onto the stack

– Fail: if the input is empty and we can’t accept

• In general, we might have a choice of (1) shift, (2) re-
duce, or (3) maybe reducing using one of several rules

• The algorithm we next describe is deterministic

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 13

Shift-Reduce Algorithms
A shift-reduce parser scans input, at each step decides to:

•Shift next token to top of parse stack (along with state info) or

•Reduce the stack by POPing several symbols off the stack (& their
state info) and PUSHing the corresponding non-terminal (& state
info)

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 14

Shift-Reduce Algorithms

The stack is always of the form

S0 X1 S1 X2 S2…Xn Sn

bottom top

state terminal or
non-terminal

• A reduction step is triggered when we see the symbols
corresponding to a rule’s RHS on the top of the stack

 S0 X1 S1 …T S6 * S7 F S8

bottom top

T -> T*F

 S0 X1 S1 …T S6’
CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 15

LR parser table

LR shift-reduce parsers can be efficiently implemented
by precomputing a table to guide the processing

More on this
Later . . .

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 16

When to shift, when to reduce

• Key problem in building a shift-reduce parser is deciding
whether to shift or to reduce

– repeat: reduce if a handle is on top of stack, shift otherwise

– Succeed if there is only S on the stack and no input

• A grammar may not be appropriate for a LR parser because
there are conflicts which can not be resolved

• Conflict occurs when the parser can’t decide whether to:

– shift or reduce the top of stack (a shift/reduce conflict), or

– reduce the top of stack using one of two possible productions
(a reduce/reduce conflict)

• There are several varieties of LR parsers (LR(0), LR(1), SLR
and LALR), with differences depending on amount of
lookahead and on construction of the parse table

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 17

Conflicts

Shift-reduce conflict: can't decide whether to shift or to reduce

• Example : "dangling else"

Stmt -> if Expr then Stmt

 | if Expr then Stmt else Stmt

 | ...

• What to do when else is at the front of the input?

Reduce-reduce conflict: can't decide which of several possible
reductions to make

• Example :

Stmt -> id (params)

 | Expr := Expr

 | ...

Expr -> id (params)

• Given the input a(i, j) the parser does not know whether it is a
procedure call or an array reference.

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 18

LR Table

• An LR configuration stores the state of an LR parser

(S0X1S1X2S2…XmSm, aiai+1…an$)

• LR parsers are table driven, where the table has two
components, an ACTION table and a GOTO table

• The ACTION table specifies the action of the parser
(shift or reduce) given the parser state and next token

– Rows are state names; columns are terminals

• The GOTO table specifies which state to put on top of
the parse stack after a reduce

– Rows are state names; columns are non-terminals

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 19

1: E -> E+T

2: E -> T

3: T -> T*F

4: T -> F

5: F -> (E)

6: F -> id

If in state 0 and
the next input is
id, then SHIFT
and go to state 5

If in state 5 and the next input
is *, then REDUCE using rule
6. Use goto table and exposed
state to select next state

If in state 1 and
no more input,
we are done

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 20

Parser actions

Initial configuration: (S0, a1…an$)

Parser actions:

1 If ACTION[Sm, ai] = Shift S, the next configuration
is: (S0X1S1X2S2…XmSmaiS, ai+1…an$)

2 If ACTION[Sm, ai] = Reduce A and S =
GOTO[Sm-r, A], where r = the length of , the next
configuration is

(S00X1S1X2S2…Xm-rSm-rAS, aiai+1…an$)

3 If ACTION[Sm, ai] = Accept, the parse is complete
and no errors were found

4 If ACTION[Sm, ai] = Error, the parser calls an error-
handling routine

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 21

Example

1: E -> E+T

2: E -> T

3: T -> T*F

4: T -> F

5: F -> (E)

6: F -> id

Stack Input action

0 Id + id * id $ Shift 5

0 id 5 + id * id $ Reduce 6 goto(0,F)

0 F 3 + id * id $ Reduce 4 goto(0,T)

0 T 2 + id * id $ Reduce 2 goto(0,E)

0 E 1 + id * id $ Shift 6

0 E 1 + 6 id * id $ Shift 5

0 E 1 + 6 id 5 * id $ Reduce 6 goto(6,F)

0 E 1 + 6 F 3 * id $ Reduce 4 goto(6,T)

0 E 1 + 6 T 9 * id $ Shift 7

0 E 1 + 6 T 9 * 7 id $ Shift 5

0 E 1 + 6 T 9 * 7 id 5 $ Reduce 6 goto(7,E)

0 E 1 + 6 T 9 * 7 F 10 $ Reduce 3 goto(6,T)

0 E 1 + 6 T 9 $ Reduce 1 goto(0,E)

0 E 1 $ Accept

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 22 CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 23

Yacc as a LR parser

• The Unix yacc utility is
just such a parser.

• It does the heavy lifting
of computing the table

• To see the table infor-
mation, use the –v flag
when calling yacc, as in

yacc –v test.y

 0 $accept : E $end

 1 E : E '+' T

 2 | T

 3 T : T '*' F

 4 | F

 5 F : '(' E ')'

 6 | "id"

state 0

 $accept : . E $end (0)

 '(' shift 1

 "id" shift 2

 . error

 E goto 3

 T goto 4

 F goto 5

state 1

 F : '(' . E ')' (5)

 '(' shift 1

 "id" shift 2

 . error

 E goto 6

 T goto 4

 F goto 5

. . .

