4d

Bottom Up
Parsing

Motivation

« In the last lecture we looked at a table
driven, top-down parser

—A parser for LL(1) grammars
* In this lecture, we’ll look a a table driven,

—A parser for LR(1) grammars

« In practice, bottom-up parsing algorithms
are used more widely for a number of
reasons

Right Sentential Forms

Right Sentential Forms
Consider this example

* We start with id+id*id

» What rules can apply to some
portion of this sequence?
—Onlyrule6: F -> id

« Are there more than one way to
apply the rule?
— Yes, three

» Apply it so the result is part of
a “right most derivation”

— If there is a derivation, there is a
right most one

— If we always choose that, we can’t
get into trouble

generation

1 E -> E+T
2E ->T
3 T -> T*F
4T->F
F -> (E

E

E+id*id
id+id*id

Buissed

Bottom rsin 1 E -> E4T
ottom up parsing SR o

- *
* A bottom up parser looks at a j i _; ; ¥
sentential form and selects a 5 F -> (E)
contiguous sequence of 6 F -> id

symbols that matches the
RHS of a grammar rule, and E
replaces it with the LHS

« There might be several 1|z 14 ¢ s LEFLE
choices, as in the l l E+T:_|_d
sentential form E+T*F - E:Ej *I:jd

»Which one should we T+id*id
choose? Frid*id

id+id*id

Buissed

1 E -> E+T
2E ->T
* Recall the definition of a 3T -> T*F
derivation and a rightmost 4T ->F
derivation o F > (E)
)) 6 F -> id
« Each of the lines is a N
(right) sentential form E
« A form of the parsing =
problem is finding the < |
correct RHS in a right- g| EfTHd g
sentential form to reduceto g S g
get the previous right- E*%*!g
sentential form in the e
derivation v id+ideid
3
i 1 E -> E+T
Bottom up parsing lEE
«If the wrong one is chosen, it j $:: ;*F
leads to failure 5 F -> (E)
+E.g.: replacing E+T with E 613 b &l
in E+T*F yields E+F, which ———
can’t be further reduced E*F
using the given grammar E+T*F
+The handle of a sentential E:;:% =
form is the RHS that should Evidsid |2
be rewritten to yield the next T+id*id
sentential form in the right F+id*id

most derivation

id+id*id

http://en.wikipedia.org/wiki/Bottom-up_parsing

Sentential forms

» Think of a sentential form
as one of the entries in a
derivation that begins
with the start symbol and
ends with a legal sentence

NG W
R E
v
&l

«It’s like a sentence but it [E+T
may have unexpanded \ E+T*F
non-terminals < i

s N &| E+THid

*We can also think of it g E+F*id
as a parse tree where g E+id*id
some leaves are as E[+]r[]id Tridid
yet unexpanded non- E+id*id
termlnals not yet expanded v m+|d*|d

Buisted

Handles
« A handle of a sentential form is a substring o such that :
— oo matches the RHS of some production A -> a ; and
—replacing o by the LHS A represents a step in the

reverse of a rightmost derivation of s. 1: S -> aABe
« For this grammar, the rightmost 2: A -> Abc
derivation for the input abbcde is 3: A->b
S =>aABe => aAde => aAbcde => abbcde 4: B ->d

« The string aAbcde can be reduced in two ways:

(1) aAbcde => aAde (using rule 2)

(2) aAbcde => aAbcBe (using rule 4)
* But (2) isn’t a rightmost derivation, so Abc is the only handle.
« Note: the string to the right of a handle will only contain

terminals (why?)
apbclre

Phrases
« A phrase is a subse- =
guence of a sentential \
form that is eventually ;
“reduced” to a single
non-terminal. e[+ [T

« Asimple phrase is a

phrase that is reduced in ~ For sentential form

P E+T*id what are the
asingle step._ phrases: | E+T1d,
» The handle is the left- T*id, id
most simple phrase. ssimple phrases: id
shandle: id

Phrases, simple phrases and handles
« Def: B is the handle of the right sentential form y =
afw ifand only if S =>*rm aAw => apfw

« Def: B is a phrase of the right sentential form y if and
only if S =>*y = alAa2 =>+ alpfa2

« Def: B is a simple phrase of the right sentential form y
ifand only if S =>*y = 01Aa2 => alfa2

« The handle of a right sentential form is its leftmost
simple phrase

« Given a parse tree, it is now easy to find the handle
« Parsing can be thought of as handle pruning

10

L N o]

Phrases, simple phrases and handles

-> E+T
> T
- *
D :
-> (E) E+T
-> id E+T*F
i E+T*id
E+F*id
. E-+id*id
\ T+id*id
F+id*id
E * T) id id+id*id

11

On to shift-reduce parsing
» How to do it w/o having a parse tree in front of us?
« Look at a shift-reduce parser - the kind that yacc uses
« A shift-reduce parser has a queue of input tokens & an

initially empty stack. It takes one of 4 possible actions:

—Accept: if the input queue is empty and the start
symbol is the only thing on the stack

—Reduce: if there is a handle on the top of the stack,
pop it off and replace it with the rule’s RHS

—Shift: push the next input token onto the stack
—Fail: if the input is empty and we can’t accept

« In general, we might have a choice of (1) shift, (2) re-
duce, or (3) maybe reducing using one of several rules

* The algorithm we next describe is deterministic

12

Shift-Reduce Algorithms

A shift-reduce parser scans input, at each step decides to:
<Shift next token to top of parse stack (along with state info) or
*Reduce the stack by POPing several symbols off the stack (& their
state info) and PUSHing the corresponding non-terminal (& state
info)

Top

Parse Stack l Input
So X1‘5| |Xm| Sm|
Parser Parsing
Code Table

Shift-Reduce Algorithms

The stack is always of the form

bottom top
S0 X{S1)X2 S2.(Xn)Sn
state terminal or

non-terminal

< Areduction step is triggered when we see the symbols
corresponding to a rule’s RHS on the top of the stack
bottom top

SoX1S1...TSe*S7F S8

T->T*F

SoX1S1...T Se’

14

LR parser table

LR shift-reduce parsers can be efficiently implemented
by precomputing a table to guide the processing

Action Goto

State| id + | «) s E|T|F

0| ss 54 123
56 accept

More on this
Later. ..

15

When to shift, when to reduce

« Key problem in building a shift-reduce parser is deciding
whether to shift or to reduce

— repeat: reduce if a handle is on top of stack, shift otherwise

— Succeed if there is only S on the stack and no input

A grammar may not be appropriate for a LR parser because

there are conflicts which can not be resolved

Conflict occurs when the parser can’t decide whether to:

— shift or reduce the top of stack (a shift/reduce conflict), or

— reduce the top of stack using one of two possible productions
(a reduce/reduce conflict)

There are several varieties of LR parsers (LR(0), LR(1), SLR
and LALR), with differences depending on amount of
lookahead and on construction of the parse table

16

Conflicts

Shift-reduce conflict: can't decide whether to shift or to reduce
» Example: "dangling else"
Stmt -> if Expr then Stmt
| if Expr then Stmt else Stmt

« What to do when else is at the front of the input?

Reduce-reduce conflict: can't decide which of several possible
reductions to make

+ Example:
Stmt -> id (params)
| Expr := Expr

Expr-> id (params)
« Given the input a(i, j) the parser does not know whether it is a
procedure call or an‘array reference.

17

LR Table

« An LR configuration stores the state of an LR parser
(SoX181 X3S - XSy s --2,9)

» LR parsers are table driven, where the table has two
components, an ACTION table and a GOTO table

» The ACTION table specifies the action of the parser
(shift or reduce) given the parser state and next token

—Rows are state names; columns are terminals

» The GOTO table specifies which state to put on top of
the parse stack after a reduce

—Rows are state names; columns are non-terminals

18]

1: E -> E+T
2: E->T
Example 3: T -> T*F
4: T ->F
5: F -> (E)
6: F -> id
Stack Input action
) Id + id * id § |Shift 5
0id 5 + id * id § Reduce 6 goto(0,F)
0F3 + id * id § Reduce 4 goto(0,T)
or2 +id * id § Reduce 2
0E1 +id * id § Shift 6
0E1+6 id * id § Shift 5
OE1+6id5 * id § Reduce 6 goto(6,F)
OE1+6F3 * id § Reduce 4 goto(6,T)
OE1+6T0H9 * id § shift 7
OE1+6T9*7 id $ Shift 5
OE1+6T9*7id5 $ Reduce 6 goto(7,E)
OE1+6T9*7F10 $ Reduce 3 goto(6,T)
OE1+6T09 $ Reduce 1 goto(0,E)
0E1 $ Accept

21

ction ot Parser actions
L L S G R Tt Initial configuration: (S0, al...an$
p o ” p 3 nitial con _1gurat10n.(, al...an$)
. AT, accept]| Parser actions:
Ifiin state 0 and . - .
thenext iput s w | e T 11f ACTION[Sg, ;] = Shift S, the next configuration
id, n s
and go'o state 5 | e [T i ISt (SeX181 X252+ XSS, o1 --2,$)
p ” 2 2 If ACTION[S,,, 3] =Reduce A— pand S =
4 | ? GOTO[S,,.. Al, where r = the length of B, the next
s R6 | R6 R6 | R6 configuration is
il [P, T i L (So0X1S1X5Sz. - Xin Sin AS, 88is1.--209)
7 |Etstoom phiismlonead]| 4 L 3 If ACTION[S,,, a] = Accept, the parse is complete
8 e s11 1. E o> et and no errors were found
9 Rl | s7 R | Rl 2: E->T 4 1f ACTIONIS,,, a] = Error, the parser calls an error-
" a “ms 4.
0 P - o | aayE handling routine
1 5: F -> (E)
. RS R5 RS RS 6: F —> id ‘ ‘ ‘ 2
Action Goto 0 $accept : E $end
1 :E '+ T
State| id Sl I N S P TF YaccasaLRparser 2 ,'f. .
0 55 54 2 3 4 | F
| s riieE
! 56 accept « The Unix yacc utility is e 1
2 | R2 | 57 R2 | R2 just such a parser. o0 e .oom @
3 Ri | Re R4 | R4 « It does the heavy lifting p
4 55 54 2 | 3 of computing the table ofremzez
| - goto
5 R6 | R6 R6 | R6 * To see the table infor- = Gm g
: goto
PRT ” s | 3 mﬁtlon, Hse the —v flag a1 e
T o p - when calling yacc, as in 28 L 5
rig" hift
8 56 s1 yacc -v testy ° e::i:s
I goto
9 R1 s7 R1 R1 ; g:::;
10 R3 R3 R3 R3
n RS | RS RS | RS
e 22 " ’ 23

