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Bottom Up
Parsing

Motivation

« In the last lecture we looked at a table
driven, top-down parser

—A parser for LL(1) grammars
* In this lecture, we’ll look a a table driven,

—A parser for LR(1) grammars

« In practice, bottom-up parsing algorithms
are used more widely for a number of
reasons

Right Sentential Forms

Right Sentential Forms
Consider this example

* We start with id+id*id

» What rules can apply to some
portion of this sequence?
—Onlyrule6: F -> id

« Are there more than one way to
apply the rule?
— Yes, three

» Apply it so the result is part of
a “right most derivation”

— If there is a derivation, there is a
right most one

— If we always choose that, we can’t
get into trouble

generation

1 E -> E+T
2E ->T
3 T -> T*F
4T->F
F -> (E

E

E+id*id
id+id*id
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Bottom rsin 1 E -> E4T
ottom up parsing SR o
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* A bottom up parser looks at a j i _; ; ¥
sentential form and selects a 5 F -> (E)
contiguous sequence of 6 F -> id

symbols that matches the
RHS of a grammar rule, and E
replaces it with the LHS

« There might be several 1|z 14 ¢ s LEFLE
choices, as in the l l E+T:_|_d
sentential form E+T*F - E:Ej *I:jd

»Which one should we T+id*id
choose? Frid*id

id+id*id

Buissed

1 E -> E+T
2E ->T
* Recall the definition of a 3T -> T*F
derivation and a rightmost 4T ->F
derivation o F > (E)
) ) 6 F -> id
« Each of the lines is a N
(right) sentential form E
« A form of the parsing =
problem is finding the < |
correct RHS in a right- g| EfTHd g
sentential form to reduceto g S g
get the previous right- E*%*!g
sentential form in the e
derivation v id+ideid
3
i 1 E -> E+T
Bottom up parsing lEE
«If the wrong one is chosen, it j $ :: ;*F
leads to failure 5 F -> (E)
+E.g.: replacing E+T with E 613 b &l
in E+T*F yields E+F, which ———
can’t be further reduced E*F
using the given grammar E+T*F
+The handle of a sentential E:;:% =
form is the RHS that should Evidsid |2
be rewritten to yield the next T+id*id
sentential form in the right F+id*id

most derivation

id+id*id



http://en.wikipedia.org/wiki/Bottom-up_parsing

Sentential forms

» Think of a sentential form
as one of the entries in a
derivation that begins
with the start symbol and
ends with a legal sentence
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R E
v
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«It’s like a sentence but it [ E+T
may have unexpanded \ E+T*F
non-terminals < i

s N &|  E+THid

*We can also think of it g E+F*id
as a parse tree where g E+id*id
some leaves are as E[+]r[]id Tridid
yet unexpanded non- E+id*id
termlnals not yet expanded v m+|d*|d
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Handles
« A handle of a sentential form is a substring o such that :
— oo matches the RHS of some production A -> a ; and
—replacing o by the LHS A represents a step in the

reverse of a rightmost derivation of s. 1: S -> aABe
« For this grammar, the rightmost 2: A -> Abc
derivation for the input abbcde is 3: A->b
S =>aABe => aAde => aAbcde => abbcde 4: B ->d

« The string aAbcde can be reduced in two ways:

(1) aAbcde => aAde (using rule 2)

(2) aAbcde => aAbcBe (using rule 4)
* But (2) isn’t a rightmost derivation, so Abc is the only handle.
« Note: the string to the right of a handle will only contain

terminals (why?)
apbclre

Phrases
« A phrase is a subse- =
guence of a sentential \
form that is eventually ;
“reduced” to a single
non-terminal. e[+ [T

« Asimple phrase is a

phrase that is reduced in ~ For sentential form

P E+T*id what are the
asingle step._ phrases: | E+T1d,
» The handle is the left- T*id, id
most simple phrase. ssimple phrases: id
shandle: id

Phrases, simple phrases and handles
« Def: B is the handle of the right sentential form y =
afw ifand only if S =>*rm aAw => apfw

« Def: B is a phrase of the right sentential form y if and
only if S =>*y = alAa2 =>+ alpfa2

« Def: B is a simple phrase of the right sentential form y
ifand only if S =>*y = 01Aa2 => alfa2

« The handle of a right sentential form is its leftmost
simple phrase

« Given a parse tree, it is now easy to find the handle
« Parsing can be thought of as handle pruning
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Phrases, simple phrases and handles

-> E+T
> T
- *
D :
-> (E) E+T
-> id E+T*F
i E+T*id
E+F*id
. E-+id*id
\ T+id*id
F+id*id
E * T ) id id+id*id
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On to shift-reduce parsing
» How to do it w/o having a parse tree in front of us?
« Look at a shift-reduce parser - the kind that yacc uses
« A shift-reduce parser has a queue of input tokens & an

initially empty stack. It takes one of 4 possible actions:

—Accept: if the input queue is empty and the start
symbol is the only thing on the stack

—Reduce: if there is a handle on the top of the stack,
pop it off and replace it with the rule’s RHS

—Shift: push the next input token onto the stack
—Fail: if the input is empty and we can’t accept

« In general, we might have a choice of (1) shift, (2) re-
duce, or (3) maybe reducing using one of several rules

* The algorithm we next describe is deterministic
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Shift-Reduce Algorithms

A shift-reduce parser scans input, at each step decides to:
<Shift next token to top of parse stack (along with state info) or
*Reduce the stack by POPing several symbols off the stack (& their
state info) and PUSHing the corresponding non-terminal (& state
info)

Top

Parse Stack l Input
So X1‘5| |Xm| Sm|
Parser Parsing
Code Table

Shift-Reduce Algorithms

The stack is always of the form

bottom top
S0 X{S1)X2 S2.(Xn)Sn
state terminal or

non-terminal

< Areduction step is triggered when we see the symbols
corresponding to a rule’s RHS on the top of the stack
bottom top

SoX1S1...TSe*S7F S8

T->T*F

SoX1S1...T Se’
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LR parser table

LR shift-reduce parsers can be efficiently implemented
by precomputing a table to guide the processing

Action Goto

State| id + | « ) s E|T|F

0| ss 54 123
56 accept

More on this
Later. ..
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When to shift, when to reduce

« Key problem in building a shift-reduce parser is deciding
whether to shift or to reduce

— repeat: reduce if a handle is on top of stack, shift otherwise

— Succeed if there is only S on the stack and no input

A grammar may not be appropriate for a LR parser because

there are conflicts which can not be resolved

Conflict occurs when the parser can’t decide whether to:

— shift or reduce the top of stack (a shift/reduce conflict), or

— reduce the top of stack using one of two possible productions
(a reduce/reduce conflict)

There are several varieties of LR parsers (LR(0), LR(1), SLR
and LALR), with differences depending on amount of
lookahead and on construction of the parse table
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Conflicts

Shift-reduce conflict: can't decide whether to shift or to reduce
» Example: "dangling else"
Stmt -> if Expr then Stmt
| if Expr then Stmt else Stmt

« What to do when else is at the front of the input?

Reduce-reduce conflict: can't decide which of several possible
reductions to make

+ Example:
Stmt -> id ( params )
| Expr := Expr

Expr-> id ( params )
« Given the input a(i, j) the parser does not know whether it is a
procedure call or an‘array reference.
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LR Table

« An LR configuration stores the state of an LR parser
(SoX181 X3S - XSy s --2,9)

» LR parsers are table driven, where the table has two
components, an ACTION table and a GOTO table

» The ACTION table specifies the action of the parser
(shift or reduce) given the parser state and next token

—Rows are state names; columns are terminals

» The GOTO table specifies which state to put on top of
the parse stack after a reduce

—Rows are state names; columns are non-terminals
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1: E -> E+T
2: E->T
Example 3: T -> T*F
4: T ->F
5: F -> (E)
6: F -> id
Stack Input action
) Id + id * id § |Shift 5
0id 5 + id * id § Reduce 6 goto(0,F)
0F3 + id * id § Reduce 4 goto(0,T)
or2 +id * id § Reduce 2
0E1 +id * id § Shift 6
0E1+6 id * id § Shift 5
OE1+6id5 * id § Reduce 6 goto(6,F)
OE1+6F3 * id § Reduce 4 goto(6,T)
OE1+6T0H9 * id § shift 7
OE1+6T9*7 id $ Shift 5
OE1+6T9*7id5 $ Reduce 6 goto(7,E)
OE1+6T9*7F10 $ Reduce 3 goto(6,T)
OE1+6T09 $ Reduce 1 goto(0,E)
0E1 $ Accept
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ction ot Parser actions
L L S G R Tt Initial configuration: (S0, al...an$
p o ” p 3 nitial con _1gurat10n.( , al...an$)
. AT, accept]| Parser actions:
Ifiin state 0 and . - .
thenext iput s w | e T 11f ACTION[Sg, ;] = Shift S, the next configuration
id, n s
and go'o state 5 | e [T i ISt (SeX181 X252+ XSS, o1 --2,$)
p ” 2 2 If ACTION[S,,, 3] =Reduce A— pand S =
4 | ? GOTO[S,,.. Al, where r = the length of B, the next
s R6 | R6 R6 | R6 configuration is
il [ P, T i L (So0X1S1X5Sz. - Xin Sin AS, 88is1.--209)
7 |Etstoom phiismlonead]| 4 L 3 If ACTION[S,,, a] = Accept, the parse is complete
8 e s11 1. E o> et and no errors were found
9 Rl | s7 R | Rl 2: E->T 4 1f ACTIONIS,,, a] = Error, the parser calls an error-
" a “ms 4.
0 P - o | aayE handling routine
1 5: F -> (E)
. RS R5 RS RS 6: F —> id ‘ ‘ ‘ 2
Action Goto 0 $accept : E $end
1 :E '+ T
State|  id Sl I N S P TF YaccasaLRparser 2 ,'f. .
0 55 54 2 3 4 | F
| s riieE
! 56 accept « The Unix yacc utility is e 1
2 | R2 | 57 R2 | R2 just such a parser. o0 e .oom @
3 Ri | Re R4 | R4 « It does the heavy lifting p
4 55 54 2 | 3 of computing the table ofremzez
| - goto
5 R6 | R6 R6 | R6 * To see the table infor- = Gm g
: goto
PRT ” s | 3 mﬁtlon, Hse the —v flag a1 e
T o p - when calling yacc, as in 28 L 5
rig" hift
8 56 s1 yacc -v testy ° e::i:s
I goto
9 R1 s7 R1 R1 ; g:::;
10 R3 R3 R3 R3
n RS | RS RS | RS
e 22 " ’ 23




