4(c) parsing .
e
e

2E(34+4)+5

Parsing
» A grammar describes syntactically legal strings
in a language
« A recogniser simply accepts or rejects strings
* A generator produces strings
« A parser constructs a parse tree for a string
» Two common types of parsers:
—bottom-up or data driven

—top-down or hypothesis driven
* A recursive descent parser easily implements a
top-down parser for simple grammars

Top down vs. bottom up parsing

* The parsing problem is to connect the root
node S with the tree leaves, the input

» Top-down parsers: starts constructing
the parse tree at the top (root) and move A=1+3*4/5
down towards the leaves. Easy to implement by
hand, but requires restricted grammars. E.g.:

- Predictive parsers (e.g., LL(k))

* Bottom-up parsers: build nodes on the bottom of
the parse tree first. Suitable for automatic parser
generation, handles larger class of grammars. E.g.:
—shift-reduce parser (or LR(K) parsers)

Top down vs. bottom up parsing

« Both are general techniques that can be made to work
for all languages (but not all grammars!)

* Recall that a given language can be described by
several grammars
« Both of these grammars describe the same language
E -> E + Num E -> Num + E
E -> Num E -> Num
* The first one, with it’s left recursion, causes
problems for top down parsers

« For a given parsing technique, we may have to
transform the grammar to work with it

Parsing complexity

» How hard is the parsing task? How to we measure that?
« Parsing an arbitrary CFG is O(n®) -- it can take time propor-
tional the cube of the number of input symbols
« This is bad! (why?)
« If we constrain the grammar somewhat, we can always parse
in linear time. This is good! (why?)
« Linear-time parsing « LL(n) : Left to right,
— LL parsers Leftmost derivation,
* Recognize LL grammar look ahead at most n
symbols.
* Use a top-down strategy « LR(n) : Left to right,
— LR parsers Right derivation,
* Recognize LR grammar look ahead at most n

symbols.
* Use a bottom-up strategy

Top Down Parsing Methods
« Simplest method is a full-backup, recur-
sive descent parser
« Often used for parsing simple languages

« Write recursive recognizers (subroutines)
for each grammar rule

—If rules succeeds perform some action
(i.e., build a tree node, emit code, etc.)

—If rule fails, return failure. Caller may
try another choice or fail

—On failure it “backs up”

Top Down Parsing Methods: Problems

» When going forward, the parser consumes

tokens from the input, so what happens if
we have to back up?

—suggestions?

« Algorithms that use backup tend to be, in
general, inefficient

—There might be a large number of possibilities
to try before finding the right one or giving up

» Grammar rules which are left-recursive
lead to non-termination!

Problems

» Some grammars cause problems for top
down parsers

 Top down parsers do not work with left-
recursive grammars
—E.g.,onewitharule like: E->E+T
— We can transform a left-recursive grammar into
one which is not
+ A top down grammar can limit backtracking
if it only has one rule per non-terminal

— The technique of rule factoring can be used to
eliminate multiple rules for a non-terminal

Direct Left-Recursive Grammars

» Consider
E -> E + Num
E —-> Num

» We can manually or automatically
rewrite a grammar removing left-

recursion, making it ok for a top-down
parser.

Recursive Decent Parsing: Example
For the grammar:

<term> -> <factor> { (*|/)<factor>}*

We could use the following recursive

descent parsing subprogram (this one is
written in C)

void term() {
factor() ; /* parse first factor*/
while (next_token == ast_code ||
next_token == slash code) ({
lexical(); /* get next token */

factor () ; /* parse next factor */
}

}

Left-recursive grammars

» A grammar is left recursive if it has
rules like

X ->XB

* Or if it has indirect left recursion, as in
X ->ApB

A -> X

*Q: Why is this a problem?

—A: it can lead to non-terminating
recursion!

Elimination of Direct Left-Recursion
« Consider left-recursive « Concretely
grammar T ->T + id
S > S o T-> id
s > * T generates strings
. ; id
S é:;enerates strings .
B a id+id+d ...
Ba a * Rewrite using right-
. S recursion
* Rewrite using right- Tl ig
recursnan T o> id T
S — S’
S’ > a S’'| €

General Left Recursion

+ The grammar
S>Au|d
A—>SB
is also left-recursive because
S>*SBa
where —* means “can be rewritten in one
or more steps”

« This indirect left-recursion can also be
automatically eliminated (not covered)

Summary of Recursive Descent

« Simple and general parsing strategy

— Left-recursion must be eliminated first

— ... but that can be done automatically
Unpopular because of backtracking

— Thought to be too inefficient

In practice, backtracking is eliminated by
further restricting the grammar to allow us
to successfully predict which rule to use

Predictive Parsers

* That there can be many rules for a non-terminal
makes parsing hard

« A predictive parser processes the input stream
typically from left to right
—Is there any other way to do it? Yes for programming

languages!

« It uses information from peeking ahead at the
upcoming terminal symbols to decide which
grammar rule to use next

+ And always makes the right choice of which rule
to use

» How much it can peek ahead is an issue

Predictive Parsers

« An important class of predictive parser only
peek ahead one token into the stream

* An LL(k) parser, does a Left-to-right parse, a
Leftmost-derivation, and k-symbol lookahead

» Grammars where one can decide which rule
to use by examining only the next token are
LL(2)

 LL(1) grammars are widely used in practice

—The syntax of a PL can usually be adjusted to
enable it to be described with an LL(1) grammar

Predictive Parser

Example: consider the grammar

S— ifEthenSelse S
S — begin SL
S — printE

L—end . - -
L—>:SL An S expression starts either with

E — num = num an IF, BEGIN, or PRINT token,
and an L expression start with an
END or a SEMICOLON token,
and an E expression has only one
production.

Remember...

» Given a grammar and a string in the language defined
by the grammar ...

» There may be more than one way to derive the string
leading to the same parse tree
— It depends on the order in which you apply the rules
—And what parts of the string you choose to rewrite next

« All of the derivations are valid

 To simplify the problem and the algorithms, we often
focus on one of two simple derivation strategies
— A leftmost derivation
— A rightmost derivation

LL(k) and LR(K) parsers

 Two important parser classes are LL(k) and LR(K)
* The name LL(k) means:
— L: Left-to-right scanning of the input
— L: Constructing leftmost derivation
— k: max # of input symbols needed to predict parser action
* The name LR(K) means:
— L: Left-to-right scanning of the input
— R: Constructing rightmost derivation in reverse
— k: max # of input symbols needed to select parser action
« A LR(1) or LL(1) parser never need to “look ahead”
more than one input token to know what parser
production rule applies

Predictive Parsing and Left Factoring

« Consider the grammar o
Even left recursion is

E—>T+E
E - T removed, a grammar
T = int may not be parsable
T - int * T with a LL(1) parser
T —=> (E)

« Hard to predict because
— For T, two productions start with int
— For E, it is not clear how to predict which rule to use
» Must left-factored grammar before use for predictive
parsing
« Left-factoring involves rewriting rules so that, if a non-
terminal has > 1 rule, each begins with a terminal

Left-Factoring Example

Add new non-terminals X and Y to factor out
common prefixes of rules

T + E

Using Parsing Tables

 LL(1) means that for each non-terminal and token
there is only one production
« Can be represented as a simple table
— One dimension for current non-terminal to expand
— One dimension for next token
— A table entry contains one rule’s action or empty if error
» Method similar to recursive descent, except
— For each non-terminal S
—We look at the next token a
— And chose the production shown at table cell [S, a]
* Use a stack to keep track of pending non-terminals
* Reject when we encounter an error state, accept when
we encounter end-of-input

E - E > T X
E—>T X B
T — int » -
T > int * T X —>
T—> (E) T > (E)
T - int Y
For each non-terminal the .
revised grammar, there is either Y - T
only one rule or every rule Y 5> ¢
begins with a terminal ore
LL(1) Parsing Table Example
Left-factored grammar
E—>TX
X > +E | ¢
T—> (E) | int Y
Y 5> *T | g
End of input symbol
The LL(1) parsing table
int & + () $
E TX TX
X wIE € €
T intY (E)
Y *T € € €

LL(1) Parsing Table Example|: -+« i«
T—> (E) | int Y
«Consider the [E, int] entry Y>> *T|eg

—“When current non-terminal is E & next input int, use production E— T X”
—It’s the only production that can generate an int in next place
«Consider the [Y, +] entry
—“When current non-terminal is Y and current token is +, get rid of Y
—Y can be followed by + only in a derivation where Y—¢
«Consider the [E, *] entry
— Blank entries indicate error situations
—“There is no way to derive a string starting with * from non-terminal E”

int * + () $
E TX TX
X F(E (€
T intY (E)
Y *T € e €

http://en.wikipedia.org/wiki/LL_parser
http://en.wikipedia.org/wiki/Canonical_LR_parser

LL(1) Parsing Algorithm

initialize stack = <S $> and next
repeat
case stack of
<X, rest> :if T[X,*next] = Y;...Y,
then stack « <Y;... Y, rest>;
else error ();
<t, rest> :ift== *next ++
then stack « <rest>;
else error ();
until stack == < >

(1) next points to the next input token
(2) X matches some non-terminal
(3) t matches some terminal

where:

LL(1) Parsing Example

Stack Input Action
E S int * int $ pop () ;jpush (T X)
T X $ int * int $ pop () ;jpush (int Y)
int ¥ X § int * int $ pop () ;next++
Y X $ * int $ pop () ;push (* T)
* T X $ * int $ pop () ;next++
T X $ int $§ pop () ;push (int Y)
int ¥ X § int $ pop () jnext++;
Y X $ S pop ()
X $ $ pop ()
$ $ ACCEPT!
E o X int * + () $
o E TX TX
X6
T > (E) X +E & €
T t
¥ T intY (E)
Y > T
Yo e Y *T € 3 €

Constructing Parsing Tables

* No table entry can be multiply defined

* If A — «, where in the line of A do we place
o?

« In column t where t can start a string derived
from o
ca "t
» We say that t € First(a)

* In the column t if o is € and t can follow an A
*SH>"BALS
* We say t € Follow(A)

Computing First Sets
Definition: First(X) = {t| X—>"ta}u{e[X—>"¢}

Algorithm sketch (see book for details):

1. forall terminalstdo First(t) < {t}

2. for each production X — ¢ do First(X) € {<}

3. ifX—>A ... A,a and ¢ € First(A)), 1 <i<n
do add First(c) to First(X)

4. foreach X — A, ... A, s.t.e € First(A), 1<i<
n do add ¢ to First(X)

5. repeat steps 4 and 5 until no First set can be
grown

First Sets. Example

Recall the grammar

E->TX X—>+E|e
T—(E)|intY Yo>*T|e
First sets

First(()={(} First(T) ={int, (}
First())={)} First(E) ={int, (}
First(int) ={int} First(X)={+¢}
First(+)={+} First(Y)={*¢}
First(*)={*}

Computing Follow Sets

« Definition:
Follow(X) ={t|S—>"B Xtd}

* Intuition
— If S is the start symbol then $ € Follow(S)

— If X — A B then First(B) < Follow(A) and
Follow(X) < Follow(B)
— Also if B —»" ¢ then Follow(X) < Follow(A)

Computing Follow Sets
Algorithm sketch:

=

Follow(S) < {$}

For each production A —» o X

« add First(B) - {e} to Follow(X)

3. Foreach A — o X B where € € First(B)
* add Follow(A) to Follow(X)

repeat step(s) ___ until no Follow set
grows

N

Follow Sets. Example

* Recall the grammar

E->TX X—>+E]|e
T (E)|intY Yo>*Tle
 Follow sets

Follow(+)={int, (} Follow(*)={int, (}
Follow(()={int, (} Follow(E)={), $}
Follow(X)={$,)} Follow(T)={+),$}
Follow())={+,),$} Follow(Y)={+),$%$}
Follow(int) = {*, +,), $}

Constructing LL(1) Parsing Tables

« Construct a parsing table T for CFG G
« For each production A — o in G do:
— For each terminal t € First(o) do
cTA =
— If ¢ € First(a), for each t € Follow(A) do
cTA =
— If ¢ € First(a) and $ € Follow(A) do
T[A, $] =«

Notes on LL(1) Parsing Tables

« If any entry is multiply defined then G is not
LL(1)

+ Reasons why a grammar is not LL(1) include
—G is ambiguous
—G is left recursive
—G is not left-factored

» Most programming language grammars are
not strictly LL(1)

* There are tools that build LL(1) tables

Bottom-up Parsing

* YACC uses bottom up parsing. There are

two important operations that bottom-up

parsers use: shift and reduce

— In abstract terms, we do a simulation of a Push
Down Automata as a finite state automata

Input: given string to be parsed and the set

of productions.

 Goal: Trace a rightmost derivation in
reverse by starting with the input string and
working backwards to the start symbol

http://en.wikipedia.org/wiki/Pushdown_automaton
http://en.wikipedia.org/wiki/Pushdown_automaton

