
CMSC 331, Some material  © 1998 by Addison Wesley Longman, Inc.   1 

4b  

 

Lexical analysis  

Finite Automata 

CMSC 331, Some material  © 1998 by Addison Wesley Longman, Inc.   2 

Finite Automata (FA) 
• FA also called Finite State Machine (FSM) 

– Abstract model of a computing entity. 

– Decides whether to accept or reject a string. 

– Every regular expression can be represented as a FA and vice 
versa 

• Two types of FAs: 

– Non-deterministic (NFA): Has more than one alternative action 
for the same input symbol.         

– Deterministic (DFA): Has at most one action for a given input 
symbol. 

• Example: how do we write a program to recognize the Java 
keyword “int”?  

 
q0 q3 

t q2 q1 i n 

CMSC 331, Some material  © 1998 by Addison Wesley Longman, Inc.   3 

RE and Finite State Automaton (FA) 

• Regular expressions are a declarative way to describe the tokens 

– Describes what is a token, but not how to recognize the token 

• FAs are used to describe how the token is recognized 

– FAs are easy to simulate in a programs 

• There is a 1-1 correspondence between FAs & regular expressions 

– A scanner generator (e.g., lex) bridges the gap between regular expressions 
and FAs.  

Scanner generator 

Finite 

automaton 
Regular 

expression 

scanner 

program 

String stream 

Tokens 

CMSC 331, Some material  © 1998 by Addison Wesley Longman, Inc.   6 

Transition Diagram 

• FA can be represented using transition diagram. 

• Corresponding to FA definition, a transition diagram has: 

– States represented by circles; 

– An Alphabet (Σ) represented by labels on edges; 

– Transitions represented by labeled directed edges between states. The 
label is the input symbol; 

– One Start State shown as having an arrow head; 

– One or more Final State(s) represented by double circles. 

 

• Example transition diagram to recognize (a|b)*abb  

 

 
q0 q3 

b q2 q1 
b a 

a 

b 

CMSC 331, Some material  © 1998 by Addison Wesley Longman, Inc.   7 

Simple examples of FA 

a 

 

 

a*  

 

 

a+ 

 

 

(a|b)
* 

start 

a 

0 

start 

a 

1 
a 

0 

start 

a 

0 

b 

start 

   a, b 

0 

start 
1 

a 
0 

CMSC 331, Some material  © 1998 by Addison Wesley Longman, Inc.   8 

Procedures of defining a DFA/NFA 

• Defining input alphabet and initial state 

• Draw the transition diagram 

• Check 

– Do all states have out-going arcs labeled with all the input 
symbols (DFA) 

– Any missing final states? 

– Any duplicate states? 

– Can all strings in the language can be accepted? 

– Are any strings not in the language accepted? 

• Naming all the states 

• Defining (S, , , q0, F)  



CMSC 331, Some material  © 1998 by Addison Wesley Longman, Inc.   9 

Example of constructing a FA 

• Construct a DFA that accepts a language L over the 
alphabet {0, 1} such that L  is the set of all strings with 
any number of  “0”s followed by any number of “1”s. 

• Regular expression: 0*1* 

•  = {0, 1} 

• Draw initial state of the transition diagram 

 

Start 

CMSC 331, Some material  © 1998 by Addison Wesley Longman, Inc.   10 

Example of constructing a FA 

• Draft the transition diagram 

 

 

 

Start 1 

0 1 

0 

Start 1 

0 1 

0 

1 

• Is “111” accepted? 

• The leftmost state has missed an arc with input “1” 

CMSC 331, Some material  © 1998 by Addison Wesley Longman, Inc.   11 

Example of constructing a FA 

• Is “00” accepted?  

• The leftmost two states are also final states 

– First state from the left:  is also accepted 

– Second state from the left: 
strings with “0”s only are also accepted 

 

Start 1 

0 1 

0 

1 

CMSC 331, Some material  © 1998 by Addison Wesley Longman, Inc.   12 

Example of constructing a FA 

• The leftmost two states are duplicate 
– their arcs point to the same states with the same symbols 

Start 1 

0 1 

• Check that they are correct 
– All strings in the language can be accepted 

» , the empty string, is accepted 

» strings with “0”s / “1”s only are accepted 

– No strings not in language are accepted 

• Naming all the states 

Start 1 

0 1 

q0 q1 

CMSC 331, Some material  © 1998 by Addison Wesley Longman, Inc.   13 

How does a FA work 
• NFA definition for (a|b)*abb 

– S = {q0, q1, q2, q3 } 

–  = { a, b } 

– Transitions:  move(q0,a)={q0, q1}, move(q0,b)={q0}, .... 

– s0 = q0 

– F = { q3 } 

• Transition diagram representation 

– Non-determinism:  

» exiting from one state there are multiple edges labeled with same symbol, or 

» There are epsilon edges. 

– How does FA work? Input:  ababb 

 
move(0, a) = 1 

move(1, b) = 2 

move(2, a) = ? (undefined) 

 

REJECT ! 

 

 

move(0, a) = 0 

move(0, b) = 0 

move(0, a) = 1 

move(1, b) = 2 

move(2, b) = 3 

 

ACCEPT ! 

 

q0 q3 
b 

q2 q1 
b a 

a 

b 

CMSC 331, Some material  © 1998 by Addison Wesley Longman, Inc.   14 

FA for (a|b)*abb 

– What does it mean that a string is accepted by a FA?  

An FA accepts an input string x iff there is a path from start to a 
final state, such that the edge labels along this path spell out x; 

– A path for “aabb”:       Q0a  q0a q1b q2b  q3 

– Is  “aab” acceptable? 

Q0a  q0a q1b q2   

Q0a  q0a q0b q0 

»Final state must be reached; 

»In general, there could be several paths. 

– Is  “aabbb” acceptable? 

Q0a  q0a q1b q2b  q3 

»Labels on the path must spell out the entire string. 

q0 q3 
b 

q2 q1 
b a 

a 

b 



CMSC 331, Some material  © 1998 by Addison Wesley Longman, Inc.   15 

Transition table 

• A transition table is a good way to implement a FSA 

– One row for each state, S 

– One column for each symbol, A 

– Entry in cell (S,A) gives set of states can be reached from state S on 
input A 

• A Nondeterministic Finite Automaton (NFA)  has at least one 
cell with more than one state 

• A Deterministic Finite Automaton (DFA) has a singe state in 
every cell 

 

STATES 

INPUT 

a b 

>Q0 {q0, q1} q0 

Q1 q2 

Q2 q3 

*Q3 

q0 q3 
b 

q2 q1 
b a 

a 

b 

(a|b)*abb 

CMSC 331, Some material  © 1998 by Addison Wesley Longman, Inc.   16 

DFA (Deterministic Finite Automaton) 

• A special case of NFA where the transition function maps the 
pair (state, symbol) to one state.  

– When represented by transition diagram,  for each state S and symbol a, there 
is at most one edge labeled a leaving S; 

– When represented by transition table,  each entry in the table is a single state. 

– There are no ε-transitions 

• Example: DFA for (a|b)*abb  

• Recall the NFA: 

 

STATES 

INPUT 

a b 

q0 q1 q0 

q1 q1 q2 

q2 q1 q3 

q3 q1 q0 

CMSC 331, Some material  © 1998 by Addison Wesley Longman, Inc.   17 

DFA to program 

• NFA is more concise, but not as easy to 
implement; 

• In DFA, since transition tables don’t 
have any alternative options, DFAs are 
easily simulated via an algorithm. 

• Every NFA can be converted to an 
equivalent DFA 

– What does equivalent mean? 

• There are general algorithms that can 
take a DFA and produce a “minimal” 
DFA. 

– Minimal in what sense? 

• There are programs that take a regular 
expression and produce a program 
based on a minimal DFA to recognize 
strings defined by the RE. 

• You can find out more in 451  
(automata theory) and/or 431 
(Compiler design) 

RE  

NFA 

DFA 

Minimized DFA 

Program 

Thompson construction 

Subset construction 

DFA simulation 
Scanner 

generator 

Minimization 


