Syntax

Some Preliminaries

« For the next several weeks we’ll look at how one
can define a programming language

» What is a language, anyway?

“Language is a system of gestures, grammar, signs,
sounds, symbols, or words, which is used to represent
and communicate concepts, ideas, meanings, and
thoughts”

» Human language is a way to communicate
representations from one (human) mind to another
» What about a programming language?

A way to communicate representations (e.g., of data or a
procedure) between human minds and/or machines

Introduction
We usually break down the problem of defining a
programming language into two parts

* defining the PL’s syntax
* defining the PL’s semantics

Syntax - the form or structure of the expressions,
statements, and program units

Semantics - the meaning of the expressions,
statements, and program units

Note: There is not always a clear boundary
between the two

Why and How

Why? We want specifications for several
communities:

« Other language designers

* Implementers

 Machines?

« Programmers (the users of the language)

How? One ways is via natural language descriptions
(e.g., user’s manuals, text books) but there are a
number of more formal techniques for specifying the
syntax and semantics

Syntax part
Character stream ~ e
: Scanner (lexical analysis)
]
Token stream ~
> Parser (syntax analysis
- o ¥
Parse tree gl
\“-. Semantic analysis and
/ intermediate code generation
Abstract syntax tree or
other intermediare form \-\. Machine-independent
/ code improvernent (optional)
Modified intermediate form \
Target code generation
Assembly or machine language, «—
or other rarget language \ Machine-specific
/ code improvernent (optional)

Modified target language

This is an overview of the standard
process of turning a text file into an Symbol table
executable program

Syntax Overview

« Language preliminaries
 Context-free grammars and BNF
« Syntax diagrams

Introduction

A sentence is a string of characters over some
alphabet (e.g., def add1(n): return n + 1)

A language is a set of sentences

Alexeme is the lowest level syntactic unit of a
language (e.g., *, add1, begin)
Actoken is a category of lexemes (e.g., identifier)
Formal approaches to describing syntax:

* Recognizers - used in compilers

« Generators - what we'll study

Lexical Structure of
Programming Languages

« The structure of its lexemes (words or tokens)
—token is a category of lexeme

+ The scanning phase (lexical analyser) collects
characters into tokens

« Parsing phase (syntactic analyser) determines
syntactic structure

Stream of tokens and’ Result of
characters values parsing

lexical

Syntactic
analyser

analyser

Grammars

Context-Free Grammars
« Developed by Noam Chomsky in the mid-
1950s.
« Language generators, meant to describe the
syntax of natural languages.
« Define a class of languages called context-free
languages.

Backus Normal/Naur Form (1959)
« Invented by John Backus to describe Algol 58
and refined by Peter Naur for Algol 60.
* BNF is equivalent to context-free grammars

Formal Grammar

» A (formal) grammar is a set of rules for
strings in a formal language

* The rules describe how to form strings
from the language’s alphabet that are valid
according to the language's syntax

» A grammar does not describe the meaning
of the strings or what can be done with
them in whatever context — only their form

Adapted from Wikipedia

«Chomsky & Backus independently came up with equiv-
alent formalisms for specifying the syntax of a language

«Backus focused on a practical way of specifying an
artificial language, like Algol

«Chomsky made fundamental contributions to mathe-
matical linguistics and was motivated by the study of
human languages.

oam Chomaty

NOAM CHOMSKY,
MIT Institute Professor;
Professor of Linguistics,
Linguistic Theory,
Syntax, Semantics,
Philosophy of Language

. i » .
Six participants in the 1960 Algol conference in Paris. This
was taken at the 1974 ACM conference on the history of
programming languages. Top: John McCarthy, Fritz Bauer,
Joe Wegstein. Bottom: John Backus, Peter Naur, Alan Perlis.

BNF (continued)

A metalanguage is a language used to describe
another language.

In BNF, abstractions are used to represent
classes of syntactic structures -- they act like
syntactic variables (also called nonterminal
symbols), e.g.

<while stmt> ::= while <logic_expr> do <stmt>

This is a rule; it describes the structure of a while
statement

http://en.wikipedia.org/wiki/Formal_grammar

BNF

« Arule has a left-hand side (LHS) which is a single
non-terminal symbol and a right-hand side (RHS),
one or more terminal or non-terminal symbols

« Agrammar is a finite, nonempty set of rules

« Anon-terminal symbol is “defined” by its rules.

« Multiple rules can be combined with the vertical-bar
(]) symbol (read as “or”)

* These two rules:

Non-terminals, pre-terminals & terminals

« A non-terminal symbol is any symbol that is in the LHS of
arule. These represent abstractions in the language (e.g.,
if-then-else-statement in

<if-then-else-statement> ::= if <test>
then <statement> else <statement>

+ Aterminal symbol is any symbol that is not on the LHS of
arule. AKA lexemes. These are the literal symbols that
will appear in a program (e.g., if, then, else in rules above).

+ A pre-terminal symbol is one that appears as a LHS of
rule(s), but in every case, the RHSs consist of single
terminal symbol, e.g., <digit> in

<digit> ::=0 | 1 | 2 | 3 .71 8] 9

BNF
* Repetition is done with recursion

* E.g., Syntactic lists are described in BNF
using recursion

» An <ident_list> is a sequence of one or more
<ident>s separated by commas.

<ident list> ::= <ident> |

<ident> , <ident list>

<value> ::= <const>
<value> ::= <ident>
are equivalent to this one:
<value> ::= <const> | <ident>
BNF Example

Here is an example of a simple grammar for a subset of
English
A sentence is noun phrase and verb phrase followed by a

period.
<sentence> ::= <nounPhrase> <verbPhrase> .
<nounPhrase> ::= <article> <noun>
<article> ::= a | the
<noun> ::= man | apple | worm | penguin
<verbPhrase> ::= <verb>|<verb> <nounPhrase>
<verb> ::= eats | throws | sees | is

Derivations

« Aderivation is a repeated application of rules, starting
with the start symbol and ending with a sentence
consisting of just all terminal symbols

« It demonstrates, or proves that the derived sentence is
“generated” by the grammar and is thus in the language
that the grammar defines

« As an example, consider our baby English grammar

<sentence> ::= <nounPhrase><verbPhrase>.
<nounPhrase> ::= <article><noun>

<article> t:= a | the

<noun> ::= man | apple | worm | penguin
<verbPhrase> ::= <verb> | <verb><nounPhrase>

<verb> ::= eats | throws | sees | is

Derivation using BNF

Here is a derivation for “the man eats the apple.”
<sentence> -> <nounPhrase><verbPhrase>.
<article><noun><verbPhrase>.
the<noun><verbPhrase>.
the man <verbPhrase>.
the man <verb><nounPhrase>.
the man eats <nounPhrase>.
the man eats <article> < noun>.
the man eats the <noun>.
the man eats the apple.

Derivation

Every string of symbols in the derivation is
a sentential form

A sentence is a sentential form that has only
terminal symbols

A leftmost derivation is one in which the
leftmost nonterminal in each sentential form
is the one that is expanded in the next step

A derivation may be either leftmost or
rightmost or something else

Another BNF Example

<program> -> <stmts> Note: There is some
_ variation in notation
<stmts> -> <stmt> for BNF grammars,
| <stmt> ; <stmts> Herewe are using ->
<stmt> -> <var> = <expr> G G ES(e

of =
<var> ->a | b | c | d

<expr> -> <term> + <term> | <term> - <term>
<term> -> <var> | const
Here is a derivation:

<program> => <stmts>

Is English a finite or infinite language?

+ Assume we have a finite set of words

« Consider adding rules like the following to the
previous example

<sentence> ::= <sentence><conj><sentence>.

<conj> :=and |or | because

Hint: Whenever you see recursion in a BNF
it’s likely that the language is infinite.

~When might it not be?

—The recursive rule might not be reachable.
There might be epsilons.

Finite and Infinite languages

» A simple language may have a finite number
of sentences

« The set of strings representing integers
between -10**6 and +10**6 is a finite
language

« A finite language can be defined by
enumerating the sentences, but using a
grammar might be much easier

* Most interesting languages have an infinite
number of sentences

=> <stmt>

=> <var> = <expr>

=> a = <expr>

=> a = <term> + <term>

=> a = <var> + <term>

=>a = b + <term>

=> a = b + const
Parse Tree

A parse tree is a hierarchical representation of
a derivation crogram>

<stmts>

<stmt>

pd

<var> = <expr>
a <term> + <term>
<var> const

b

Another Parse Tree

<sentence>

W <verbPhrase>

<MFCIC> <norn> <verb> <nounPhrase>

eats -
<article> <nopn>

the man

the apple

Grammar

» Agrammar is ambiguous if and only if
(iff) it generates a sentential form that
has two or more distinct parse trees

» Ambiguous grammars are, in general,
very undesirable in formal languages

* Can you guess why?

» We can eliminate ambiguity by revising
the grammar

Ambiguous English Sentences

« | saw the man on the hill with a
telescope

« Time flies like an arrow
« Fruit flies like a banana

« Buffalo buffalo Buffalo buffalo
buffalo buffalo Buffalo buffalo

See: Syntactic Ambiguity

<e>-> <e> <op> <e>

Two derivations for 1+2*3 <e>-> 1123

<op> -> +[-[*|/

An ambiguous grammar

Here is a simple grammar for expressions that
is ambiguous

<e> -> <e> <op> <e>
<e> -> 1]2|3
<op> -> +|-|*|/

Fyi....In a programming language, an expression
is some code that is evaluated and produces a
value. A statement is code that s executed and
does something but does not produce a value.

The sentence 1+2*3 can lead to two different
parse trees corresponding to 1+(2*3) and
(1+2)*3

<e> -> <e> <op> <e> <e> -> <e> <op> <e>
-> 1 <op> <e> -> <e> <op> <e> <op> <e>
> 14 <e> -> 1 <op> <e> <op> <e>
-> 1 + <e> <op> <e> -> 1 + <e> <op> <e>
-> 1 + 2 <op> <e> -> 1 + 2 <op> <e>
> 142 % <e> > 142 % <e>
>1+2%3 >1+2%3
o e
el [op e e Olp e
10+ el [op| [e T op |e
2 * 3 1 + 2

<e>-> <e> <op> <e>

Two derivations for 1+2*3 <e>-> 1213

<op>->+-[*|/

<e> -> <e> <op> <e> <e> -> <e> <op> <e>

-> 1 <op> <e> -> <e> <op> <e> <op> <e>
> 1 + <e> -> 1 <op> <e> <op> <e>
-> 1 + <e> <op> <e> -> 1 + <e> <op> <e>

-> 1 + 2 <op> <e> -> 1 + 2 <op> <e>

-S> 1+ 2 % <e> > 1+ 2 % <e>
-=>1+2*3 -=>1+2*3

e e

/\\ E/OL\E
[1 N AN
[]

+

W o
it

The leaves of the trees are terminals and correspond to the sentence

<e>-> <e> <op> <e>

Two derivations for 1+2*3 <e>-> 11213

<op>-> +[-[*|/

/i\ e/]p\e
LN E/ONL

p e
]
1

JE—=Y
* °
wh— o

2

0l
*
*

+

pE
)

2 3 1 2

_ Lower trees represent the way we think about the sentence ‘meaning’

http://en.wikipedia.org/wiki/Buffalo_buffalo_Buffalo_buffalo_buffalo_buffalo_Buffalo_buffalo
http://en.wikipedia.org/wiki/Buffalo_buffalo_Buffalo_buffalo_buffalo_buffalo_Buffalo_buffalo
http://en.wikipedia.org/wiki/Syntactic_ambiguity

Operators

« The traditional operator notation introduces
many problems.

* Operators are used in
— Prefix notation: Expression (* (+ 1 3) 2) in Lisp
— Infix notation: Expression (1 + 3) * 2 in Java
— Postfix notation: Increment foo++ in C

» Operators can have one or more operands
—Increment in C is a one-operand operator: foo++
— Subtraction in C is a two-operand operator: foo - bar

— Conditional expressmn in C is a three-operand
operators: (foo==3?0:1)

Operator notation

* So, how do we interpret expressions like
@2+3+4
(b)2+3*4
* While you might argue that it doesn’t matter for (a), it
can for different operators (2 ** 3 ** 4) or when the

limits of representation are hit (e.g., round off in
numbers, e.g., 1+1+1+1+1+1+1+1+1+1+1+10**6)

» Concepts:

—Explaining rules in terms of operator precedence
and associativity

—Realizing the rules in grammars

Operators: Precedence and Associativity

» Precedence and associativity deal with the
evaluation order within expressions

» Precedence rules specify order in which operators
of different precedence level are evaluated, e.g.:

“*#” Has a higher precedence that “+”, so “*” groups more
tightly than “+”

* What is the results of 4*5**6?

* A language’s precedence hierarchy should match
our intuitions, but the result’s not always perfect, as
in this Pascal example:

if A<B and C<D then A:=0;

« Pascal relational operators have lowest precedence!

ifA<BandC<DthenA:=0;

Operator Precedence: Precedence Table

Operator Precedence: Precedence Table

& (bitowise mud)

~ (bitrwise exclusive or)

I (bit-wise inelusive or)

.and. & (logical and) and, or, xor
{logieal operators)

Lor. 11 (logieal or)

.eqv-, meqv. ?: (if..theu. . elsc)
(logical comparisous)

/= W= >
= (assigument)

Fortran Pascal I3 Ada
++, —— (post-inc., dec.)
o not ++, — (pre-inc, dec.) abs (absolute
= = (). & (addoss o). walue)
(contents of), 1 (logical not), not, xx
~ (bit-wise not)
./ w, /. div, med, (binary), /. *, /. med, Tem
and % (modulo division)
- + - (umary and +, - (binary) +, - (mary)
binary), or
<<, > +, = (bimary).
(left and right bit shift) & ion)
.eq.. .ne., .1t.,
le., .gb., -ge. < >y <= > = /= <= > e
(comparisons) (mequality tests) (comparisons)

ot ==, I = (equality tests)

, (sequenciug)

Operators: Associativity
« Associativity rules specify order in which operators
of the same precedence level are evaluated

« Operators are typically either left associative or
right associative.

« Left associativity is typical for +, -, * and /
*So A+B+C

—Means: (A+B)+C

—And not: A+ (B + C)
« Does it matter?

http://en.wikipedia.org/wiki/Order_of_operations
http://en.wikipedia.org/wiki/Order_of_operations
http://en.wikipedia.org/wiki/Order_of_operations
http://en.wikipedia.org/wiki/Order_of_operations
http://en.wikipedia.org/wiki/Order_of_operations

Operators: Associativity

* For + and * it doesn’t matter in theory (though it can in
practice) but for —and / it matters in theory, too.
» What should A-B-C mean?
(A-B)-C#A-(B-C)
» What s the results of 2 **3**4?
—2%* (3**4) =2**81=2417851639229258349412352
—(2**3)** 4 =8**4=14096
« Languages diverge on this case:

— In Fortran, ** associates from right-to-left, as in normally
the case for mathematics

— In Ada, ** doesn’t associate; you must write the previous
expressionas 2 ** (3 ** 4) to obtain the expected answer

Associativity in C
« In C, as in most languages, most of the operators
associate left to right
atb+c=>(a+b)+c

« The various assignment operators however associate
right to left

= += -= *z= [= Y= >>= <<= &= "= |:

« Consider a += b += ¢, which is interpreted as

a+=(b+=c)
« and not as

(a +=b)+=c
« Why?

Precedence and associativity in Grammar

Sentence: const — const / const

Derivation:
<expr>=> <expr> - <term>
=> <term> - <term>
=> const - <term>
Parse tree: => const - <term>/ const
=> const - const / const

<‘e><pr> - <term>
<term> <term> / const
const cons!

Precedence and associativity in Grammar

If we use the parse tree to indicate precedence

levels of the operators, we cannot have

ambiguity

An unambiguous expression grammar:
<expr> -> <expr> - <term> | <term>

<term> -> <term> / const | const

Grammar (continued)

Operator associativity can also be
indicated by a grammar

<expr> -> <expr> + <expr> | const (ambiguous)
<expr> -> <expr> + const | const (Unambiguous)
<expr>

T
<expr> + const

<expr> + const
|

Does this grammar rule
const. make the + operator right
or left associative?

An Expression Grammar

Here’s a grammar to define simple arithmetic
expressions over variables and numbers.

Exp ::=num Here's another

Exp ::=id
Exp ::= UnOp Exp
Exp := Exp BinOp Exp

Exp:='CExp)'
UnOp ="+
UnOp ::

BinOp =+ | ™ |/

common notation
variant where
single quotes are
used to indicate
terminal symbols
and unquoted
symbols are taken
as non-terminals.

A derivation

A derivation of a+b*2 using the expression grammar:

Exp => // Exp ::= Exp BinOp Exp
Exp BinOp Exp => // Exp ::= id
id BinOp Exp => // BinOp ::= '+'
id + Exp => // Exp ::= Exp BinOp Exp
id + Exp BinOp Exp => // Exp ::= num
id + Exp BinOp num => // Exp ::= id
id + id BinOp num => // BinOp ::=
id + id * num
a +b *2

A parse tree

A parse tree for a+b*2:

Exp
/ | \
Exp BinOp Exp
I | /o \
id + Exp BinOp Exp
I I I I
a id * num
| |
b 2

Precedence
« Precedence refers to the order in which operations
are evaluated
« Usual convention: exponents > mult, div > add, sub

« Deal with operations in categories: exponents,
mulops, addops.

« Arevised grammar that follows these conventions:

Exp ::= Exp AddOp Exp

Exp Term

Term Term MulOp Term
Term : Factor

Factor (' + Exp + ")
Factor num | id

AddOp ::= '4' | -7
MulOp ::= '*' | '/

A parse tree

Another possible parse tree for a+b*2:

Exp
/ | \
Exp BinOp Exp
/ | A |
Exp BinOp Exp * num
| | | | |
id + id 2
| |
a b

Associativity

« Associativity refers to the order in which two
of the same operation should be computed

* 3+4+5 = (3+4)+5, left associative (all
BinOps)
* 3MN5 = 3N(415), right associative
« Conditionals right associate but have a

wrinkle: an else clause associates with closest
unmatched if

if a then if b then c else d
=if a then (if b then c else d)

Adding associativity to the grammar

Adding associativity to the BinOp expression
grammar

Exp ::= Exp AddOp Term
Exp Term

Term = Term MulOp Factor
Term ::= Factor

Factor ::= '(' Exp ')'
Factor ::= num | id

AddOp ::= '"+' | '-"

MulOp ::= '*' | '/"'

Grammar

Bxp :i= Exp AddOp Term

Derivation

Exp =>

Exp AddOp Term =>

Exp AddOp Exp AddOp Term =>
Term AddOp Exp AddOp Term =>
Factor AddOp Exp AddOp Term =>
Num AddOp Exp AddOp Term =>
Num + Exp AddOp Term =>

E Num + Factor AddOp Term =>
Num + Num AddOp Term =>
= AT Num + Num - Term =>

Num + Num - Factor =>

=AY Num + Num - Num

num
T . F
F num

Example: conditionals
» Most languages allow two conditional forms,
with and without an else clause:
— ifx<0thenx=-x
— ifx<0thenx=-xelse x=x+1
* But we’ll need to decide how to interpret:
— ifx<Othenify<Ox=-lelsex=-2
« To which if does the else clause attach?

« This is like the syntactic ambiguity in attach-
ment of prepositional phrases in English

— the man near a cat with a hat

Example: conditionals

« Goal: to create a correct grammar for conditionals.

« It needs to be non-ambiguous and the precedence is else
with nearest unmatched if

Statement ::
Conditional
Conditional

Conditional | ‘whatever'
" test 'then’ Statement 'else’ Statement
" test 'then’ Statement

» The grammar is ambiguous. The first Conditional
allows unmatched ifs to be Conditionals

— Good: if test then (if test then whatever else whatever)
— Bad: if test then (if test then whatever) else whatever

» Goal: write a grammar that forces an else clause to
attach to the nearest if w/o an else clause

Example: conditionals
« All languages use standard rule to determine
which if expression an else clause attaches to
* The rule:
— An else clause attaches to the nearest if to
its left that does not yet have an else clause
» Example:
— ifx<Othenify<0Ox=-1lelsex=-2
— ifx<Othenify<0Ox=-1lelsex=-2

Example: conditionals

The final unambiguous grammar

Statement ::= Matched | Unmatched

Matched ::= 'if' test 'then' Matched 'else' Matched
| 'whatever'

Unmatched ::= 'if' test 'then' Statement

| '"if' test 'then' Matched ‘else’ Unmatched

Syntactic Sugar

« Syntactic sugar: syntactic features designed to
make code easier to read or write while
alternatives exist

» Makes the language sweeter for humans to use:
things can be expressed more clearly, concisely,
or in an alternative style that some prefer

« Syntactic sugar can be removed from language
without effecting what can be done

« All applications of the construct can be
systematically replaced with equivalents that don’t
use it

adapted from Wikipedia

http://en.wikipedia.org/wiki/Syntactic_sugar

Extended BNF

Syntactic sugar: doesn’t extend the expressive power
of the formalism, but does make it easier to use, i.e.,
more readable and more writable

*Optional parts are placed in brackets ([])
<proc_call>-> ident [(<expr_list>)]

*Put alternative parts of RHSs in parentheses and
separate them with vertical bars

<term>-> <term> (+| -) const
*Put repetitions (0 or more) in braces ({})
<ident> -> letter {letter | digit}

BNF vs EBNF
BNF:

<expr> -> <expr> + <term>
| <expr> - <term>
| <term>

<term> -> <term> * <factor>

| <term> / <factor>

| <factor>
EBNF:
<expr> -> <term> {(+ | -) <term>}
<term> -> <factor> {(* | /) <factor>}

Parsing

» A grammar describes the strings of tokens that are
syntactically legal ina PL
« A recogniser simply accepts or rejects strings.
« A generator produces sentences in the language
described by the grammar
« A parser construct a derivation or parse tree for a
sentence (if possible)
+ Two common types of parsers are:
— bottom-up or data driven
— top-down or hypothesis driven
« A recursive descent parser is a way to implement a
top-down parser that is particularly simple.

Syntax Graphs

Syntax Graphs - Put the terminals in circles or ellipses
and put the nonterminals in rectangles; connect with
lines with arrowheads

e.g., Pascal type declarations

Provides an intuitive, graphical notation.

type_identifier
-

O O

constant

constant
| S —

Parsing complexity
» How hard is the parsing task?

« Parsing an arbitrary context free grammar is O(nd),
e.g., it can take time proportional the cube of the
number of symbols in the input. This is bad!

« If we constrain the grammar somewhat, we can
always parse in linear time. This is good!
« Linear-time parsing
e LL(n): Left to right,

—LL parsers . Leftmost derivation,
» Recognize LL grammar look ahead at most n
» Use a top-down strategy symbols.)

_ LR parsers « LR(n) : Left to right,

. Right derivation, look
» Recognize LR grammar ahead at most n

» Use a bottom-up strategy symbols.

Parsing complexity

» How hard is the parsing task?

« Parsing an arbitrary context free grammar
is O(n%) in the worst case.

« E.g., it can take time proportional the cube
of the number of symbols in the input

» So what?
« This is bad!

Parsing complexity

« If it takes t, seconds to parse your C program
with n lines of code, how long will it take to

take if you make it twice as long?
- time(n) = t; time(2n) = 23" time(n)
- 8 times longer
« Suppose v3 of your code is has 10n lines?
« 103 or 1000 times as long

» Windows Vista was said to have ~50M lines

of code

Linear complexity parsing
« Practical parsers have time complexity that is linear
in the number of tokens, i.e., O(n)

« If v2.0 or your program is twice as long, it will take
twice as long to parse

* This is achieved by modifying the grammar so it can
be parsed more easily

« Linear-time parsing « LL(): Left to right,

~ LL parsers Leftmost derivation,
» Recognize LL grammar look ahead at most n
» Use a top-down strategy symbols.
— LR parsers * LR(n) : Left to right,
» Recognize LR grammar Right derivation, look
ahead at most n

» Use a bottom-up strategy
symbols.

Recursive Decent Parsing

« Each nonterminal in the grammar has a
subprogram associated with it; the
subprogram parses all sentential forms that
the nonterminal can generate

* The recursive descent parsing subprograms
are built directly from the grammar rules

* Recursive descent parsers, like other top-
down parsers, cannot be built from left-
recursive grammars (why not?)

Hierarchy of Linear Parsers

« Basic containment relationship
— All CFGs can be recognized by LR parser

CFGs LR parsing

LL parsing

— Only a subset of all the CFGs can be recognized by LL parsers

Recursive Decent Parsing Example

Example: For the grammar:

<term> -> <factor> {(*|/)<factor>}

We could use the following recursive
descent parsing subprogram (e.g., one in
)]

void term() {
factor (); /* parse first factor*/
while (next_token == ast_code ||
next_token == slash_code) {
lexical(); /* get next token */
factor(); /* parse next factor */
}
}

uncomputable
The
Turing Phrase i
ChomSky machines structure
hlerarChy Linear-bounded Context-
automata sensitive
Pueh down Context-free
automata
Finite state Regular
automata
crude
«The Chomsky hierarchy machines grammars

has four types of languages and their associated grammars and machines.

«They form astrict hierarchy; that is, regular languages < context-free
languages < context-sensitive languages < recursively enumerable languages.

«+The syntax of computer languages are usually describable by regular or
context free languages.

Summary

* The syntax of a programming language is usually
defined using BNF or a context free grammar

+ In addition to defining what programs are
syntactically legal, a grammar also encodes
meaningful or useful abstractions (e.g., block of
statements)

« Typical syntactic notions like operator
precedence, associativity, sequences, optional
statements, etc. can be encoded in grammars

« A parser is based on a grammar and takes an input
string, does a derivation and produces a parse tree.

