
CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

3

Syntax

 CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Some Preliminaries

• For the next several weeks we’ll look at how one
can define a programming language

• What is a language, anyway?

“Language is a system of gestures, grammar, signs,
sounds, symbols, or words, which is used to represent
and communicate concepts, ideas, meanings, and
thoughts”

• Human language is a way to communicate
representations from one (human) mind to another

• What about a programming language?

A way to communicate representations (e.g., of data or a
procedure) between human minds and/or machines

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

We usually break down the problem of defining a

programming language into two parts

• defining the PL’s syntax

• defining the PL’s semantics

Syntax - the form or structure of the expressions,

statements, and program units

Semantics - the meaning of the expressions,

statements, and program units

Note: There is not always a clear boundary

between the two

Introduction

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Why and How

Why? We want specifications for several

communities:

• Other language designers

• Implementers

• Machines?

• Programmers (the users of the language)

How? One ways is via natural language descriptions

(e.g., user’s manuals, text books) but there are a

number of more formal techniques for specifying the

syntax and semantics

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

This is an overview of the standard
process of turning a text file into an
executable program.

Syntax part

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Syntax Overview

• Language preliminaries

• Context-free grammars and BNF

• Syntax diagrams

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

A sentence is a string of characters over some

alphabet (e.g., def add1(n): return n + 1)

A language is a set of sentences

A lexeme is the lowest level syntactic unit of a

language (e.g., *, add1, begin)

A token is a category of lexemes (e.g., identifier)

Formal approaches to describing syntax:

• Recognizers - used in compilers

• Generators - what we'll study

Introduction

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Lexical Structure of

Programming Languages

• The structure of its lexemes (words or tokens)

– token is a category of lexeme

• The scanning phase (lexical analyser) collects
characters into tokens

• Parsing phase (syntactic analyser) determines
syntactic structure

Stream of
characters

Result of
parsing

tokens and
values

lexical
analyser

Syntactic
analyser

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Formal Grammar

• A (formal) grammar is a set of rules for
strings in a formal language

• The rules describe how to form strings
from the language’s alphabet that are valid
according to the language's syntax

• A grammar does not describe the meaning
of the strings or what can be done with
them in whatever context — only their form

Adapted from Wikipedia

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Grammars

Context-Free Grammars
• Developed by Noam Chomsky in the mid-

1950s.

• Language generators, meant to describe the

syntax of natural languages.

• Define a class of languages called context-free

languages.

Backus Normal/Naur Form (1959)
• Invented by John Backus to describe Algol 58

and refined by Peter Naur for Algol 60.

• BNF is equivalent to context-free grammars

 CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Six participants in the 1960 Algol conference in Paris. This
was taken at the 1974 ACM conference on the history of
programming languages. Top: John McCarthy, Fritz Bauer,
Joe Wegstein. Bottom: John Backus, Peter Naur, Alan Perlis.

NOAM CHOMSKY,
MIT Institute Professor;
Professor of Linguistics,
Linguistic Theory,
Syntax, Semantics,
Philosophy of Language

• Chomsky & Backus independently came up with equiv-
alent formalisms for specifying the syntax of a language

• Backus focused on a practical way of specifying an
artificial language, like Algol

• Chomsky made fundamental contributions to mathe-
matical linguistics and was motivated by the study of
human languages.

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

A metalanguage is a language used to describe

another language.

In BNF, abstractions are used to represent

classes of syntactic structures -- they act like

syntactic variables (also called nonterminal

symbols), e.g.

<while_stmt> ::= while <logic_expr> do <stmt>

This is a rule; it describes the structure of a while

statement

BNF (continued)

http://en.wikipedia.org/wiki/Formal_grammar

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

BNF

• A rule has a left-hand side (LHS) which is a single

non-terminal symbol and a right-hand side (RHS),

one or more terminal or non-terminal symbols

• A grammar is a finite, nonempty set of rules

• A non-terminal symbol is “defined” by its rules.

• Multiple rules can be combined with the vertical-bar

(|) symbol (read as “or”)

• These two rules:
<value> ::= <const>

<value> ::= <ident>

are equivalent to this one:
<value> ::= <const> | <ident>

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Non-terminals, pre-terminals & terminals

• A non-terminal symbol is any symbol that is in the LHS of
a rule. These represent abstractions in the language (e.g.,
if-then-else-statement in

<if-then-else-statement> ::= if <test>

then <statement> else <statement>

• A terminal symbol is any symbol that is not on the LHS of
a rule. AKA lexemes. These are the literal symbols that
will appear in a program (e.g., if, then, else in rules above).

• A pre-terminal symbol is one that appears as a LHS of
rule(s), but in every case, the RHSs consist of single
terminal symbol, e.g., <digit> in

<digit> ::= 0 | 1 | 2 | 3 … 7 | 8 | 9

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

• Repetition is done with recursion

• E.g., Syntactic lists are described in BNF

using recursion

• An <ident_list> is a sequence of one or more

<ident>s separated by commas.

<ident_list> ::= <ident> |

 <ident> , <ident_list>

BNF

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

BNF Example

Here is an example of a simple grammar for a subset of
English

A sentence is noun phrase and verb phrase followed by a
period.

<sentence> ::= <nounPhrase> <verbPhrase> .

<nounPhrase> ::= <article> <noun>

<article> ::= a | the

<noun> ::= man | apple | worm | penguin

<verbPhrase> ::= <verb>|<verb> <nounPhrase>

<verb> ::= eats | throws | sees | is

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Derivations

• A derivation is a repeated application of rules, starting

with the start symbol and ending with a sentence

consisting of just all terminal symbols

• It demonstrates, or proves that the derived sentence is

“generated” by the grammar and is thus in the language

that the grammar defines

• As an example, consider our baby English grammar
<sentence> ::= <nounPhrase><verbPhrase>.

<nounPhrase> ::= <article><noun>

<article> ::= a | the

<noun> ::= man | apple | worm | penguin

<verbPhrase> ::= <verb> | <verb><nounPhrase>

<verb> ::= eats | throws | sees | is

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Derivation using BNF

Here is a derivation for “the man eats the apple.”

<sentence> -> <nounPhrase><verbPhrase>.

 <article><noun><verbPhrase>.

 the<noun><verbPhrase>.

 the man <verbPhrase>.

 the man <verb><nounPhrase>.

 the man eats <nounPhrase>.

 the man eats <article> < noun>.

 the man eats the <noun>.

 the man eats the apple.

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Every string of symbols in the derivation is

a sentential form

A sentence is a sentential form that has only

terminal symbols

A leftmost derivation is one in which the

leftmost nonterminal in each sentential form

is the one that is expanded in the next step

A derivation may be either leftmost or

rightmost or something else

Derivation

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Another BNF Example
<program> -> <stmts>

<stmts> -> <stmt>

 | <stmt> ; <stmts>

<stmt> -> <var> = <expr>

<var> -> a | b | c | d

<expr> -> <term> + <term> | <term> - <term>

<term> -> <var> | const

Here is a derivation:
<program> => <stmts>
 => <stmt>

 => <var> = <expr>

 => a = <expr>

 => a = <term> + <term>

 => a = <var> + <term>

 => a = b + <term>

 => a = b + const

Note: There is some
variation in notation
for BNF grammars.
Here we are using ->
in the rules instead
of ::= .

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Finite and Infinite languages

• A simple language may have a finite number
of sentences

• The set of strings representing integers
between -10**6 and +10**6 is a finite
language

• A finite language can be defined by
enumerating the sentences, but using a
grammar might be much easier

• Most interesting languages have an infinite
number of sentences

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Is English a finite or infinite language?

• Assume we have a finite set of words

• Consider adding rules like the following to the
previous example

<sentence> ::= <sentence><conj><sentence>.

<conj> ::= and | or | because

• Hint: Whenever you see recursion in a BNF
it’s likely that the language is infinite.

–When might it not be?

–The recursive rule might not be reachable.
There might be epsilons.

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Parse Tree

 <program>

 <stmts>

 <stmt>

 <var> = <expr>

 a <term> + <term>

 <var> const

 b

A parse tree is a hierarchical representation of
a derivation

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Another Parse Tree

<sentence>

<nounPhrase> <verbPhrase>

<article> <noun> <verb> <nounPhrase>

<article> <noun>
the man eats

the apple

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

• A grammar is ambiguous if and only if

(iff) it generates a sentential form that

has two or more distinct parse trees

• Ambiguous grammars are, in general,

very undesirable in formal languages

• Can you guess why?

• We can eliminate ambiguity by revising

the grammar

Grammar

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

• I saw the man on the hill with a

telescope

• Time flies like an arrow

• Fruit flies like a banana

• Buffalo buffalo Buffalo buffalo

buffalo buffalo Buffalo buffalo

Ambiguous English Sentences

See: Syntactic Ambiguity
CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

An ambiguous grammar

Here is a simple grammar for expressions that

is ambiguous

<e> -> <e> <op> <e>

<e> -> 1|2|3

<op> -> +|-|*|/

The sentence 1+2*3 can lead to two different

parse trees corresponding to 1+(2*3) and

(1+2)*3

Fyi… In a programming language, an expression
is some code that is evaluated and produces a
value. A statement is code that is executed and
does something but does not produce a value.

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Two derivations for 1+2*3

<e> -> <e> <op> <e>

 -> 1 <op> <e>

 -> 1 + <e>

 -> 1 + <e> <op> <e>

 -> 1 + 2 <op> <e>

 -> 1 + 2 * <e>

 -> 1 + 2 * 3

<e> -> <e> <op> <e>
<e> -> 1|2|3
<op> -> +|-|*|/

<e> -> <e> <op> <e>

 -> <e> <op> <e> <op> <e>

 -> 1 <op> <e> <op> <e>

 -> 1 + <e> <op> <e>

 -> 1 + 2 <op> <e>

 -> 1 + 2 * <e>

 -> 1 + 2 * 3

e

e op e

1 + e op e

* 2 3

e

e op e

3 *
e op e

+ 1 2

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Two derivations for 1+2*3

<e> -> <e> <op> <e>

 -> 1 <op> <e>

 -> 1 + <e>

 -> 1 + <e> <op> <e>

 -> 1 + 2 <op> <e>

 -> 1 + 2 * <e>

 -> 1 + 2 * 3

<e> -> <e> <op> <e>
<e> -> 1|2|3
<op> -> +|-|*|/

<e> -> <e> <op> <e>

 -> <e> <op> <e> <op> <e>

 -> 1 <op> <e> <op> <e>

 -> 1 + <e> <op> <e>

 -> 1 + 2 <op> <e>

 -> 1 + 2 * <e>

 -> 1 + 2 * 3

e

e op e

1 + e op e

* 2 3

The leaves of the trees are terminals and correspond to the sentence

e

e op e

3 *
e op e

+ 1 2

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Two derivations for 1+2*3

<e> -> <e> <op> <e>
<e> -> 1|2|3
<op> -> +|-|*|/

 e

e op e

1 + e op e

* 2 3

+

1 *

3 2

*

3 +

2 1

e

e op e

3 *
e op e

+ 1 2

Lower trees represent the way we think about the sentence ‘meaning’

http://en.wikipedia.org/wiki/Buffalo_buffalo_Buffalo_buffalo_buffalo_buffalo_Buffalo_buffalo
http://en.wikipedia.org/wiki/Buffalo_buffalo_Buffalo_buffalo_buffalo_buffalo_Buffalo_buffalo
http://en.wikipedia.org/wiki/Syntactic_ambiguity

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Operators

• The traditional operator notation introduces
many problems.

• Operators are used in
– Prefix notation: Expression (* (+ 1 3) 2) in Lisp

– Infix notation: Expression (1 + 3) * 2 in Java

– Postfix notation: Increment foo++ in C

• Operators can have one or more operands
– Increment in C is a one-operand operator: foo++

– Subtraction in C is a two-operand operator: foo - bar

– Conditional expression in C is a three-operand
operators: (foo == 3 ? 0 : 1)

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Operator notation

• So, how do we interpret expressions like

(a) 2 + 3 + 4

(b) 2 + 3 * 4

• While you might argue that it doesn’t matter for (a), it
can for different operators (2 ** 3 ** 4) or when the
limits of representation are hit (e.g., round off in
numbers, e.g., 1+1+1+1+1+1+1+1+1+1+1+10**6)

• Concepts:

– Explaining rules in terms of operator precedence
and associativity

– Realizing the rules in grammars

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Operators: Precedence and Associativity

• Precedence and associativity deal with the
evaluation order within expressions

• Precedence rules specify order in which operators
of different precedence level are evaluated, e.g.:

“*” Has a higher precedence that “+”, so “*” groups more
tightly than “+”

• What is the results of 4 * 5 ** 6 ?

• A language’s precedence hierarchy should match
our intuitions, but the result’s not always perfect, as
in this Pascal example:

if A<B and C<D then A := 0 ;

• Pascal relational operators have lowest precedence!

if A < B and C < D then A := 0 ;

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Operator Precedence: Precedence Table

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Operator Precedence: Precedence Table

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Operators: Associativity

• Associativity rules specify order in which operators

of the same precedence level are evaluated

• Operators are typically either left associative or

right associative.

• Left associativity is typical for +, - , * and /

• So A + B + C

– Means: (A + B) + C

– And not: A + (B + C)

• Does it matter?

http://en.wikipedia.org/wiki/Order_of_operations
http://en.wikipedia.org/wiki/Order_of_operations
http://en.wikipedia.org/wiki/Order_of_operations
http://en.wikipedia.org/wiki/Order_of_operations
http://en.wikipedia.org/wiki/Order_of_operations

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Operators: Associativity

• For + and * it doesn’t matter in theory (though it can in

practice) but for – and / it matters in theory, too.

• What should A-B-C mean?

(A – B) – C A – (B – C)

• What is the results of 2 ** 3 ** 4 ?

– 2 ** (3 ** 4) = 2 ** 81 = 2417851639229258349412352

– (2 ** 3) ** 4 = 8 ** 4 = 4096

• Languages diverge on this case:

– In Fortran, ** associates from right-to-left, as in normally
the case for mathematics

– In Ada, ** doesn’t associate; you must write the previous
expression as 2 ** (3 ** 4) to obtain the expected answer

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Associativity in C

• In C, as in most languages, most of the operators

associate left to right

a + b + c => (a + b) + c

• The various assignment operators however associate

right to left

= += -= *= /= %= >>= <<= &= ^= |=

• Consider a += b += c, which is interpreted as

a += (b += c)

• and not as

(a += b) += c

• Why?

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

If we use the parse tree to indicate precedence

levels of the operators, we cannot have

ambiguity

An unambiguous expression grammar:

<expr> -> <expr> - <term> | <term>

<term> -> <term> / const | const

Precedence and associativity in Grammar

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Sentence: const – const / const

Precedence and associativity in Grammar

Derivation:

<expr> => <expr> - <term>

 => <term> - <term>

 => const - <term>

 => const - <term> / const

 => const - const / const

 <expr>

 <expr> - <term>

 <term> <term> / const

 const const

Parse tree:

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Grammar (continued)

Operator associativity can also be

indicated by a grammar

<expr> -> <expr> + <expr> | const (ambiguous)

<expr> -> <expr> + const | const (unambiguous)

 <expr>

 <expr> + const

 <expr> + const

 const

Does this grammar rule
make the + operator right
or left associative?

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

An Expression Grammar

Here’s a grammar to define simple arithmetic
expressions over variables and numbers.

 Exp ::= num

 Exp ::= id

 Exp ::= UnOp Exp

 Exp := Exp BinOp Exp

 Exp ::= '(' Exp ')'

 UnOp ::= '+'

 UnOp ::= '-'

 BinOp ::= '+' | '-' | '*' | '/

Here’s another
common notation
variant where
single quotes are
used to indicate
terminal symbols
and unquoted
symbols are taken
as non-terminals.

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

A derivation

A derivation of a+b*2 using the expression grammar:

Exp => // Exp ::= Exp BinOp Exp

Exp BinOp Exp => // Exp ::= id

id BinOp Exp => // BinOp ::= '+'

id + Exp => // Exp ::= Exp BinOp Exp

id + Exp BinOp Exp => // Exp ::= num

id + Exp BinOp num => // Exp ::= id

id + id BinOp num => // BinOp ::= '*'

id + id * num

a + b * 2

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

A parse tree

A parse tree for a+b*2:

 __Exp__

 / | \

 Exp BinOp Exp

 | | / | \

 id + Exp BinOp Exp

 | | | |

 a id * num

 | |

 b 2

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

A parse tree

Another possible parse tree for a+b*2:

 __Exp__

 / | \

 Exp BinOp Exp

 / | \ | |

 Exp BinOp Exp * num

 | | | | |

 id + id 2

 | |

 a b

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Precedence

• Precedence refers to the order in which operations
are evaluated

• Usual convention: exponents > mult, div > add, sub

• Deal with operations in categories: exponents,
mulops, addops.

• A revised grammar that follows these conventions:

Exp ::= Exp AddOp Exp

Exp ::= Term

Term ::= Term MulOp Term

Term ::= Factor

Factor ::= '(' + Exp + ')‘

Factor ::= num | id

AddOp ::= '+' | '-’

MulOp ::= '*' | '/'

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Associativity

• Associativity refers to the order in which two
of the same operation should be computed

• 3+4+5 = (3+4)+5, left associative (all
BinOps)

• 3^4^5 = 3^(4^5), right associative

• Conditionals right associate but have a
wrinkle: an else clause associates with closest
unmatched if

if a then if b then c else d

= if a then (if b then c else d)

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Adding associativity to the grammar

Adding associativity to the BinOp expression
grammar

 Exp ::= Exp AddOp Term

 Exp ::= Term

 Term ::= Term MulOp Factor

 Term ::= Factor

 Factor ::= '(' Exp ')'

 Factor ::= num | id

 AddOp ::= '+' | '-'

 MulOp ::= '*' | '/'

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Exp ::= Exp AddOp Term

Exp ::= Term

Term ::= Term MulOp Factor

Term ::= Factor

Factor ::= '(' Exp ')’

Factor ::= num | id

AddOp ::= '+' | '-‘

MulOp ::= '*' | '/'

Grammar

Exp =>

Exp AddOp Term =>

Exp AddOp Exp AddOp Term =>

Term AddOp Exp AddOp Term =>

Factor AddOp Exp AddOp Term =>

Num AddOp Exp AddOp Term =>

Num + Exp AddOp Term =>

Num + Factor AddOp Term =>

Num + Num AddOp Term =>

Num + Num - Term =>

Num + Num - Factor =>

Num + Num - Num

Derivation

E

A E

A E

T

F

num

T

F

num

T

F

num

-

+

Parse tree

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Example: conditionals

• Most languages allow two conditional forms,
with and without an else clause:

– if x < 0 then x = -x

– if x < 0 then x = -x else x = x+1

• But we’ll need to decide how to interpret:

– if x < 0 then if y < 0 x = -1 else x = -2

• To which if does the else clause attach?

• This is like the syntactic ambiguity in attach-
ment of prepositional phrases in English

– the man near a cat with a hat

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Example: conditionals

• All languages use standard rule to determine

which if expression an else clause attaches to

• The rule:

– An else clause attaches to the nearest if to

its left that does not yet have an else clause

• Example:

– if x < 0 then if y < 0 x = -1 else x = -2

– if x < 0 then if y < 0 x = -1 else x = -2

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Example: conditionals

• Goal: to create a correct grammar for conditionals.

• It needs to be non-ambiguous and the precedence is else
with nearest unmatched if

Statement ::= Conditional | 'whatever'

Conditional ::= 'if' test 'then' Statement 'else‘ Statement

Conditional ::= 'if' test 'then' Statement

• The grammar is ambiguous. The first Conditional
allows unmatched ifs to be Conditionals

– Good: if test then (if test then whatever else whatever)

– Bad: if test then (if test then whatever) else whatever

• Goal: write a grammar that forces an else clause to
attach to the nearest if w/o an else clause

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Example: conditionals

The final unambiguous grammar

Statement ::= Matched | Unmatched

Matched ::= 'if' test 'then' Matched 'else' Matched

 | 'whatever'

Unmatched ::= 'if' test 'then' Statement

 | 'if' test 'then' Matched ‘else’ Unmatched

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Syntactic Sugar

• Syntactic sugar: syntactic features designed to
make code easier to read or write while
alternatives exist

• Makes the language sweeter for humans to use:
things can be expressed more clearly, concisely,
or in an alternative style that some prefer

• Syntactic sugar can be removed from language
without effecting what can be done

• All applications of the construct can be
systematically replaced with equivalents that don’t
use it

adapted from Wikipedia

http://en.wikipedia.org/wiki/Syntactic_sugar

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Syntactic sugar: doesn’t extend the expressive power

of the formalism, but does make it easier to use, i.e.,

more readable and more writable

•Optional parts are placed in brackets ([])

 <proc_call> -> ident [(<expr_list>)]

•Put alternative parts of RHSs in parentheses and

separate them with vertical bars

 <term> -> <term> (+ | -) const

•Put repetitions (0 or more) in braces ({})

 <ident> -> letter {letter | digit}

Extended BNF

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

BNF:

<expr> -> <expr> + <term>

 | <expr> - <term>

 | <term>

<term> -> <term> * <factor>

 | <term> / <factor>

 | <factor>

EBNF:

<expr> -> <term> {(+ | -) <term>}

<term> -> <factor> {(* | /) <factor>}

BNF vs EBNF

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Syntax Graphs

Syntax Graphs - Put the terminals in circles or ellipses

and put the nonterminals in rectangles; connect with

lines with arrowheads

 e.g., Pascal type declarations

Provides an intuitive, graphical notation.

..

type_identifier

(identifier)

,

constant constant

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Parsing

• A grammar describes the strings of tokens that are
syntactically legal in a PL

• A recogniser simply accepts or rejects strings.

• A generator produces sentences in the language
described by the grammar

• A parser construct a derivation or parse tree for a
sentence (if possible)

• Two common types of parsers are:

– bottom-up or data driven

– top-down or hypothesis driven

• A recursive descent parser is a way to implement a
top-down parser that is particularly simple.

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

• How hard is the parsing task?

• Parsing an arbitrary context free grammar is O(n3),
e.g., it can take time proportional the cube of the
number of symbols in the input. This is bad!

• If we constrain the grammar somewhat, we can
always parse in linear time. This is good!

• Linear-time parsing

– LL parsers

» Recognize LL grammar

» Use a top-down strategy

– LR parsers

» Recognize LR grammar

» Use a bottom-up strategy

Parsing complexity

• LL(n) : Left to right,
Leftmost derivation,
look ahead at most n
symbols.

• LR(n) : Left to right,
Right derivation, look
ahead at most n
symbols.

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

• How hard is the parsing task?

• Parsing an arbitrary context free grammar
is O(n3) in the worst case.

• E.g., it can take time proportional the cube
of the number of symbols in the input

• So what?

• This is bad!

Parsing complexity

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

• If it takes t1 seconds to parse your C program
with n lines of code, how long will it take to
take if you make it twice as long?

- time(n) = t1, time(2n) = 23 * time(n)

- 8 times longer

• Suppose v3 of your code is has 10n lines?

• 103 or 1000 times as long

• Windows Vista was said to have ~50M lines
of code

Parsing complexity

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

• Practical parsers have time complexity that is linear
in the number of tokens, i.e., O(n)

• If v2.0 or your program is twice as long, it will take
twice as long to parse

• This is achieved by modifying the grammar so it can
be parsed more easily

• Linear-time parsing
– LL parsers

» Recognize LL grammar

» Use a top-down strategy

– LR parsers

» Recognize LR grammar

» Use a bottom-up strategy

Linear complexity parsing

• LL(n) : Left to right,
Leftmost derivation,
look ahead at most n
symbols.

• LR(n) : Left to right,
Right derivation, look
ahead at most n
symbols.

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

• Each nonterminal in the grammar has a
subprogram associated with it; the
subprogram parses all sentential forms that
the nonterminal can generate

• The recursive descent parsing subprograms
are built directly from the grammar rules

• Recursive descent parsers, like other top-
down parsers, cannot be built from left-
recursive grammars (why not?)

Recursive Decent Parsing

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Hierarchy of Linear Parsers

• Basic containment relationship
– All CFGs can be recognized by LR parser

– Only a subset of all the CFGs can be recognized by LL parsers

LL parsing

CFGs LR parsing

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Recursive Decent Parsing Example

Example: For the grammar:

 <term> -> <factor> {(*|/)<factor>}

We could use the following recursive
descent parsing subprogram (e.g., one in
C)

 void term() {

 factor(); /* parse first factor*/

 while (next_token == ast_code ||

 next_token == slash_code) {

 lexical(); /* get next token */

 factor(); /* parse next factor */

 }

 }

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

The

Chomsky

hierarchy

•The Chomsky hierarchy
has four types of languages and their associated grammars and machines.

•They form a strict hierarchy; that is, regular languages < context-free
languages < context-sensitive languages < recursively enumerable languages.

•The syntax of computer languages are usually describable by regular or
context free languages.

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Summary

• The syntax of a programming language is usually
defined using BNF or a context free grammar

• In addition to defining what programs are
syntactically legal, a grammar also encodes
meaningful or useful abstractions (e.g., block of
statements)

• Typical syntactic notions like operator
precedence, associativity, sequences, optional
statements, etc. can be encoded in grammars

• A parser is based on a grammar and takes an input
string, does a derivation and produces a parse tree.

