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Some Preliminaries 

• For the next several weeks we’ll look at how one 
can define a programming language 

• What is a language, anyway? 

“Language is a system of gestures, grammar, signs, 
sounds, symbols, or words, which is used to represent 
and communicate concepts, ideas, meanings, and 
thoughts” 

• Human language is a way to communicate 
representations from one (human) mind to another 

• What about a programming language? 

A way to communicate representations (e.g., of data or a 
procedure) between human minds and/or machines 
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We usually break down the problem of defining a 

programming language into two parts 
 

• defining the PL’s syntax 

• defining the PL’s semantics 
 

Syntax - the form or structure of the expressions, 

statements, and program units 
 

Semantics - the meaning of the expressions, 

statements, and program units 
 

Note: There is not always a clear boundary 

between the two 

Introduction 

CMSC 331, Some material  © 1998 by Addison Wesley Longman, Inc.   

Why and How 

Why?  We want specifications for several 

communities: 

• Other language designers 

• Implementers 

• Machines? 

• Programmers (the users of the language) 

 

How?  One ways is via natural language descriptions 

(e.g., user’s manuals, text books) but there are a 

number of more formal techniques for specifying the 

syntax and semantics 
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This is an overview of the standard 
process of turning a text file into an 
executable program. 

Syntax part 
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Syntax Overview 

• Language preliminaries 

• Context-free grammars and BNF 

• Syntax diagrams 
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A sentence is a string of characters over some 

alphabet (e.g., def add1(n): return n + 1) 

A language is a set of sentences 

A lexeme is the lowest level syntactic unit of a  

language (e.g., *, add1, begin) 

A token is a category of lexemes (e.g., identifier) 

Formal approaches to describing syntax: 

• Recognizers - used in compilers 

• Generators - what we'll study 

Introduction 
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Lexical Structure of 

Programming Languages 

• The structure of its lexemes (words or tokens) 

– token is a category of lexeme 

• The scanning phase (lexical analyser) collects 
characters into tokens 

• Parsing phase (syntactic analyser) determines 
syntactic structure 

Stream of 
characters 

Result of 
parsing 

tokens and 
values 

lexical  
analyser 

Syntactic  
analyser 
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Formal Grammar 

• A (formal) grammar is a set of rules for 
strings in a formal language 

 

• The rules describe how to form strings 
from the language’s alphabet that are valid 
according to the language's syntax  
 

• A grammar does not describe the meaning 
of the strings or what can be done with 
them in whatever context — only their form 

Adapted from Wikipedia 

CMSC 331, Some material  © 1998 by Addison Wesley Longman, Inc.   

Grammars 

Context-Free Grammars 
• Developed by Noam Chomsky in the mid-

1950s. 

• Language generators, meant to describe the 

syntax of natural languages. 

• Define a class of languages called context-free 

languages. 

 

Backus Normal/Naur Form (1959) 
• Invented by John Backus to describe Algol 58 

and refined by Peter Naur for Algol 60. 

• BNF is equivalent to context-free grammars  
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Six participants in the 1960 Algol conference in Paris. This 
was taken at the 1974 ACM conference on the history of 
programming languages. Top: John McCarthy, Fritz Bauer, 
Joe Wegstein. Bottom: John Backus, Peter Naur, Alan Perlis.   

NOAM CHOMSKY, 
MIT Institute Professor; 
Professor of Linguistics, 
Linguistic Theory, 
Syntax, Semantics, 
Philosophy of Language 

• Chomsky & Backus independently came up with equiv-
alent formalisms for specifying the syntax of a language 

• Backus focused on a practical way of specifying an 
artificial language, like Algol 

• Chomsky made fundamental contributions to mathe-
matical linguistics and was motivated by the study of 
human languages. 
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A metalanguage is a language used to describe 

another language. 

In BNF, abstractions are used to represent 

classes of syntactic structures -- they act like 

syntactic variables (also called nonterminal 

symbols), e.g. 

<while_stmt> ::= while <logic_expr> do <stmt> 

This is a rule; it describes the structure of a while 

statement 

BNF (continued) 

http://en.wikipedia.org/wiki/Formal_grammar
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BNF  

• A rule has a left-hand side (LHS) which is a single 

non-terminal symbol and a right-hand side (RHS), 

one or more terminal or non-terminal symbols 

• A grammar is a finite, nonempty set of rules 

• A non-terminal symbol is “defined” by its rules. 

• Multiple rules can be combined with the vertical-bar  

( | ) symbol (read as “or”) 

• These two rules: 
<value> ::= <const> 

<value> ::= <ident> 

are equivalent to this one: 
<value> ::= <const> | <ident> 
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Non-terminals, pre-terminals & terminals 

• A non-terminal symbol is any symbol that is in the LHS of 
a rule.  These represent abstractions in the language (e.g., 
if-then-else-statement in 

<if-then-else-statement> ::= if <test> 

then <statement> else <statement> 

• A terminal symbol is any symbol that is not on the LHS of 
a rule.  AKA lexemes.  These are the literal symbols that 
will appear in a program (e.g., if, then, else in rules above). 

• A pre-terminal symbol is one that appears as a LHS of 
rule(s), but in every case, the RHSs consist of single 
terminal symbol, e.g., <digit> in 

<digit> ::= 0 | 1 | 2 | 3 … 7 | 8 | 9 
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• Repetition is done with recursion 

• E.g., Syntactic lists are described in BNF 

using recursion  

• An <ident_list> is a sequence of one or more 

<ident>s separated by commas. 

 

<ident_list> ::= <ident> | 

                 <ident> , <ident_list> 

BNF 
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BNF Example  

Here is an example of a simple grammar for a subset of 
English   

A sentence is noun phrase and verb phrase followed by a 
period. 

<sentence> ::= <nounPhrase> <verbPhrase> . 

<nounPhrase> ::= <article> <noun> 

<article> ::= a | the 

<noun> ::= man | apple | worm | penguin 

<verbPhrase> ::= <verb>|<verb> <nounPhrase> 

<verb> ::= eats | throws | sees | is 
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Derivations 

• A derivation is a repeated application of rules, starting 

with the start symbol and ending with a sentence  

consisting of just all terminal symbols 

• It demonstrates, or proves that the derived sentence is 

“generated” by the grammar and is thus in the language 

that the grammar defines 

• As an example, consider our baby English grammar 
<sentence>    ::= <nounPhrase><verbPhrase>. 

<nounPhrase>  ::= <article><noun> 

<article>     ::= a | the 

<noun>        ::= man | apple | worm | penguin 

<verbPhrase>  ::= <verb> | <verb><nounPhrase> 

<verb>        ::= eats | throws | sees | is 
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Derivation using BNF 

Here is a derivation for “the man eats the apple.” 

<sentence> -> <nounPhrase><verbPhrase>. 

                          <article><noun><verbPhrase>. 

                          the<noun><verbPhrase>. 

                          the man <verbPhrase>. 

                          the man <verb><nounPhrase>. 

                          the man eats <nounPhrase>. 

                          the man eats <article> < noun>. 

                          the man eats the <noun>. 

                          the man eats the apple.      
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Every string of symbols in the derivation is 

a sentential form 

A sentence is a sentential form that has only  

terminal symbols 

A leftmost derivation is one in which the 

leftmost nonterminal in each sentential form 

is the one that is expanded in the next step 

A derivation may be either leftmost or 

rightmost or something else 

Derivation  
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Another BNF  Example 
<program> -> <stmts> 

<stmts> -> <stmt>  

        | <stmt> ; <stmts> 

<stmt> -> <var> = <expr> 

<var> -> a | b | c | d 

<expr> -> <term> + <term> | <term> - <term> 

<term> -> <var> | const 

Here is a  derivation: 
<program> => <stmts>  
          => <stmt>  

          => <var> = <expr>  

          => a = <expr>  

          => a = <term> + <term> 

          => a = <var> + <term>  

          => a = b + <term> 

          => a = b + const 

Note: There is some 
variation in notation 
for BNF grammars.  
Here we are using -> 
in the rules instead 
of ::= . 
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Finite and Infinite languages 

• A simple language may have a finite number 
of sentences 

• The set of strings representing integers 
between -10**6 and +10**6 is a finite 
language 

• A finite language can be defined by 
enumerating the sentences, but using a 
grammar might be much easier 

• Most interesting languages have an infinite 
number of sentences 
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Is English a finite or infinite language? 

• Assume we have a finite set of words 

• Consider adding rules like the following to the 
previous example 

<sentence> ::= <sentence><conj><sentence>. 

<conj>     ::= and | or | because 

• Hint: Whenever you see recursion in a BNF 
it’s likely that the language is infinite. 

–When might it not be?  

–The recursive rule might not be reachable. 
There might be epsilons.  
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Parse Tree 

               <program> 

 

              

                <stmts> 

 

 

                 <stmt> 

 

 

            <var>  =     <expr> 

 

 

             a      <term>  +   <term> 

 

                             

                    <var>       const 

 

 

                      b    

A parse tree is a hierarchical representation of 
a derivation 
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Another Parse Tree 

<sentence> 

<nounPhrase>  <verbPhrase> 

<article> <noun> <verb> <nounPhrase>  

<article> <noun> 
the man eats 

the apple 
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• A grammar is ambiguous if and only if 

(iff) it generates a sentential form that 

has two or more distinct parse trees 

• Ambiguous grammars are, in general, 

very undesirable in formal languages 

• Can you guess why? 

• We can eliminate ambiguity by revising 

the grammar 

Grammar  
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• I saw the man on the hill with a 

telescope 

• Time flies like an arrow 

• Fruit flies like a banana 

• Buffalo buffalo Buffalo buffalo 

buffalo buffalo Buffalo buffalo 

 

Ambiguous English Sentences  

See: Syntactic Ambiguity 
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An ambiguous grammar 

Here is a simple grammar for expressions that 

is ambiguous 
 

<e> -> <e> <op> <e> 

<e> -> 1|2|3 

<op> -> +|-|*|/ 

 

The sentence 1+2*3 can lead to two different 

parse trees corresponding to 1+(2*3) and 

(1+2)*3 
 

Fyi… In a programming language, an expression 
is some code that is evaluated and produces a 
value.  A statement is code that is executed and 
does something but does not produce a value. 

CMSC 331, Some material  © 1998 by Addison Wesley Longman, Inc.   

Two derivations for 1+2*3 

<e> -> <e> <op> <e> 

    -> 1 <op> <e> 

    -> 1 + <e> 

    -> 1 + <e> <op> <e> 

    -> 1 + 2 <op> <e> 

    -> 1 + 2 * <e> 

    -> 1 + 2 * 3 

 

 

<e> -> <e> <op> <e> 
<e> -> 1|2|3 
<op> -> +|-|*|/ 

<e> -> <e> <op> <e> 

    -> <e> <op> <e> <op> <e> 

    -> 1 <op> <e> <op> <e> 

    -> 1 + <e> <op> <e> 

    -> 1 + 2 <op> <e> 

    -> 1 + 2 * <e> 

    -> 1 + 2 * 3 

 

 
e 

e op e 

1 + e op e 

* 2 3 

e 

e op e 

3 * 
e op e 

+ 1 2 
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Two derivations for 1+2*3 

<e> -> <e> <op> <e> 

    -> 1 <op> <e> 

    -> 1 + <e> 

    -> 1 + <e> <op> <e> 

    -> 1 + 2 <op> <e> 

    -> 1 + 2 * <e> 

    -> 1 + 2 * 3 

 

 

<e> -> <e> <op> <e> 
<e> -> 1|2|3 
<op> -> +|-|*|/ 

<e> -> <e> <op> <e> 

    -> <e> <op> <e> <op> <e> 

    -> 1 <op> <e> <op> <e> 

    -> 1 + <e> <op> <e> 

    -> 1 + 2 <op> <e> 

    -> 1 + 2 * <e> 

    -> 1 + 2 * 3 

 

 
e 

e op e 

1 + e op e 

* 2 3 

The leaves of the trees are terminals and correspond to the sentence 

e 

e op e 

3 * 
e op e 

+ 1 2 
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Two derivations for 1+2*3 

 

<e> -> <e> <op> <e> 
<e> -> 1|2|3 
<op> -> +|-|*|/ 

 

 e 

e op e 

1 + e op e 

* 2 3 

+ 

1 * 

3 2 

* 

3 + 

2 1 

e 

e op e 

3 * 
e op e 

+ 1 2 

Lower trees represent the way we think about the sentence ‘meaning’ 

http://en.wikipedia.org/wiki/Buffalo_buffalo_Buffalo_buffalo_buffalo_buffalo_Buffalo_buffalo
http://en.wikipedia.org/wiki/Buffalo_buffalo_Buffalo_buffalo_buffalo_buffalo_Buffalo_buffalo
http://en.wikipedia.org/wiki/Syntactic_ambiguity
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Operators 

• The traditional operator notation introduces 
many problems. 

• Operators are used in 
– Prefix notation: Expression (* (+ 1 3) 2) in Lisp 

– Infix notation: Expression (1 + 3) * 2 in Java  

– Postfix notation: Increment foo++ in C 

• Operators can have one or more operands 
– Increment in C is a one-operand operator: foo++ 

– Subtraction in C is a two-operand operator: foo - bar 

– Conditional expression in C is a three-operand 
operators:  (foo == 3 ? 0 : 1) 
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Operator notation 

• So, how do we interpret expressions like 

(a) 2 + 3 + 4 

(b) 2 + 3 * 4 

• While you might argue that it doesn’t matter for (a), it 
can for different operators (2 ** 3 ** 4) or when the 
limits of representation are hit (e.g., round off in 
numbers, e.g., 1+1+1+1+1+1+1+1+1+1+1+10**6) 

• Concepts: 

– Explaining rules in terms of operator precedence 
and associativity 

– Realizing the rules in grammars 
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Operators: Precedence and Associativity 

• Precedence and associativity deal with the 
evaluation order within expressions 

• Precedence rules specify order in which operators 
of different precedence level are evaluated, e.g.: 

“*” Has a higher precedence that “+”, so “*” groups more 
tightly than “+” 

• What is the results of  4 * 5 ** 6 ? 

• A language’s precedence hierarchy should match 
our intuitions, but the result’s not always perfect, as 
in this Pascal example: 

if A<B and C<D then A := 0 ; 

• Pascal relational operators have lowest precedence! 

if A < B and C < D then A := 0 ; 
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Operator Precedence: Precedence Table 
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Operator Precedence: Precedence Table 
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Operators: Associativity 

• Associativity rules specify order in which operators 

of the same precedence level are evaluated 

• Operators are typically either left associative or 

right associative. 

• Left associativity is typical for +, - , * and / 

• So  A + B + C  

– Means: (A + B) + C 

– And not: A + (B + C) 

• Does it matter? 

http://en.wikipedia.org/wiki/Order_of_operations
http://en.wikipedia.org/wiki/Order_of_operations
http://en.wikipedia.org/wiki/Order_of_operations
http://en.wikipedia.org/wiki/Order_of_operations
http://en.wikipedia.org/wiki/Order_of_operations
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Operators: Associativity 

• For + and * it doesn’t matter in theory (though it can in 

practice) but for – and / it matters in theory, too. 

• What should A-B-C mean? 

(A – B) – C  A – (B – C) 

• What is the results of  2 ** 3 ** 4 ? 

– 2 ** (3 ** 4) = 2 ** 81 = 2417851639229258349412352 

– (2 ** 3) ** 4 = 8 ** 4 = 4096 

• Languages diverge on this case: 

– In Fortran, ** associates from right-to-left, as in normally 
the case for mathematics 

– In Ada, ** doesn’t associate; you must write the previous 
expression as 2 ** (3 ** 4) to obtain the expected answer 
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Associativity in C 

• In C, as in most languages, most of the operators 

associate left to right 

a + b + c => (a + b) + c 

• The various assignment operators however associate 

right to left 

=  +=  -=  *=  /=  %=  >>=  <<=  &=  ^=  |=  

• Consider a += b += c, which is interpreted as  

a += (b += c) 

• and not as  

(a  += b) += c 

• Why? 
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If we use the parse tree to indicate precedence 

levels of the operators, we cannot have 

ambiguity 

An unambiguous expression grammar: 

<expr> -> <expr> - <term>  |  <term> 

<term> -> <term> / const  |  const 

 

                         

Precedence and associativity in Grammar 
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Sentence: const – const / const 

Precedence and associativity in Grammar 

Derivation: 

<expr> => <expr> - <term>  

            => <term> - <term> 

            => const - <term>  

            => const - <term> / const 

            => const - const / const 

 

 

                        <expr> 

 

               <expr>     -          <term> 

 

               <term>         <term>   /      const 

 

               const          const 

      

 

Parse tree: 
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Grammar (continued) 

Operator associativity can also be 

indicated by a grammar 

 
<expr> -> <expr> + <expr>  |  const  (ambiguous) 

<expr> -> <expr> + const  |  const  (unambiguous) 
 
                  <expr> 

 

       <expr>        +     const 

 

   <expr> +  const 

 

   const 

Does this grammar rule 
make the + operator right 
or left associative? 
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An Expression Grammar 

Here’s a  grammar to define simple arithmetic 
expressions over variables and numbers.  
  

      Exp ::= num 

     Exp ::= id 

     Exp ::= UnOp Exp 

     Exp := Exp BinOp Exp 

     Exp ::= '(' Exp ')' 
 

     UnOp ::= '+' 

     UnOp ::= '-' 

     BinOp ::= '+' | '-' | '*' | '/ 

Here’s another 
common notation 
variant where 
single quotes are 
used to indicate 
terminal symbols 
and unquoted 
symbols are taken 
as non-terminals. 
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A derivation 

A derivation of a+b*2 using the expression grammar:  

 

Exp =>               // Exp ::= Exp BinOp Exp 

Exp BinOp Exp =>   // Exp ::= id 

id BinOp Exp =>    // BinOp ::= '+' 

id + Exp =>        // Exp ::= Exp BinOp Exp 

id + Exp BinOp Exp => // Exp ::= num 

id + Exp BinOp num => // Exp ::= id 

id + id BinOp num =>  // BinOp ::= '*' 

id + id * num 

a  + b  * 2 

CMSC 331, Some material  © 1998 by Addison Wesley Longman, Inc.   

A parse tree 

A parse tree for a+b*2:  

 

                            __Exp__ 

           /    |   \ 

        Exp   BinOp   Exp 

          |     |   /  |    \ 

         id     + Exp BinOp Exp 

         |         |     |   | 

         a         id    *  num 

                   |         | 

                   b         2 
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A parse tree 

Another possible parse tree for a+b*2:  

 

                            __Exp__ 

           /    |   \ 

        Exp   BinOp   Exp 

    /    |   \  |      | 

  Exp BinOp Exp *     num 

   |     |   |     |   | 

   id    +   id        2 

   |         | 

   a         b 
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Precedence 

• Precedence refers to the order in which operations 
are evaluated  

• Usual convention: exponents > mult, div > add, sub 

• Deal with operations in categories: exponents, 
mulops, addops.  

• A revised grammar that follows these conventions: 
 

Exp ::= Exp AddOp Exp 

Exp ::= Term 

Term ::= Term MulOp Term 

Term ::= Factor 

Factor ::= '(' + Exp + ')‘ 

Factor ::= num | id 

AddOp ::= '+' | '-’ 

MulOp ::= '*' | '/' 
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Associativity 

• Associativity refers to the order in which two 
of the same operation should be computed  

• 3+4+5 = (3+4)+5, left associative (all 
BinOps)  

• 3^4^5 = 3^(4^5), right associative  

• Conditionals right associate but have a 
wrinkle: an else clause associates with closest 
unmatched if  

if a then if b then c else d 

= if a then (if b then c else d) 
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Adding associativity to the grammar 

Adding associativity to the BinOp expression 
grammar 

     Exp    ::= Exp AddOp Term 

     Exp    ::= Term            

     Term   ::= Term MulOp Factor 

     Term   ::= Factor            

     Factor ::= '(' Exp ')' 

     Factor ::= num | id 

     AddOp  ::= '+' | '-' 

     MulOp  ::= '*' | '/' 
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Exp    ::= Exp AddOp Term 

Exp    ::= Term 

Term   ::= Term MulOp Factor 

Term   ::= Factor        

Factor ::= '(' Exp ')’ 

Factor ::= num | id 

AddOp  ::= '+' | '-‘ 

MulOp  ::= '*' | '/' 

Grammar 

Exp => 

Exp AddOp Term => 

Exp AddOp Exp AddOp Term => 

Term AddOp Exp AddOp Term => 

Factor AddOp Exp AddOp Term => 

Num AddOp Exp AddOp Term => 

Num + Exp AddOp Term => 

Num + Factor AddOp Term => 

Num + Num AddOp Term => 

Num + Num - Term => 

Num + Num - Factor => 

Num + Num - Num 

 

Derivation 

E 

A E 

A E 

T 

F 

num 

T 

F 

num 

T 

F 

num 

- 

+ 

Parse tree 
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Example: conditionals 

• Most languages allow two conditional forms, 
with and without an else clause: 

– if x < 0 then x = -x 

– if x < 0 then x = -x else x = x+1 

• But we’ll need to decide how to interpret: 

– if x < 0 then if y < 0 x = -1 else x = -2 

• To which if does the else clause attach? 

• This is like the syntactic ambiguity in attach-
ment of prepositional phrases in English 

– the man  near a cat  with a hat 
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Example: conditionals 

• All languages use standard rule to determine 

which if expression an else clause attaches to 

• The rule: 

– An else clause attaches to the nearest if to 

its left that does not yet have an else clause 

• Example: 

–  if x < 0 then if y < 0 x = -1 else x = -2 

–  if x < 0 then if y < 0 x = -1 else x = -2 
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Example: conditionals 

• Goal: to create a correct grammar for conditionals.  

• It needs to be non-ambiguous and the precedence is else 
with nearest unmatched if 
 

Statement    ::= Conditional | 'whatever' 

Conditional ::= 'if' test 'then' Statement 'else‘ Statement 

Conditional ::= 'if' test 'then' Statement 
 

• The grammar is ambiguous. The first Conditional 
allows unmatched ifs to be Conditionals  

– Good: if test then (if test then whatever else whatever) 

– Bad: if test then (if test then whatever) else whatever 

• Goal: write a grammar that forces an else clause to 
attach to the nearest if w/o an else clause 
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Example: conditionals 

The final unambiguous grammar 

 
Statement ::= Matched | Unmatched 

Matched ::= 'if' test 'then' Matched 'else' Matched  

             | 'whatever' 

Unmatched ::= 'if' test 'then' Statement 

             | 'if' test 'then' Matched ‘else’ Unmatched 
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Syntactic Sugar 

• Syntactic sugar: syntactic features designed to 
make code easier to read or write while 
alternatives exist 

• Makes the language sweeter for humans to use: 
things can be expressed more clearly, concisely, 
or in an alternative style that some prefer 

• Syntactic sugar can be removed from language 
without effecting what can be done 

• All applications of the construct can be 
systematically replaced with equivalents that don’t 
use it 

adapted from Wikipedia 

http://en.wikipedia.org/wiki/Syntactic_sugar
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Syntactic sugar: doesn’t extend the expressive power 

of the formalism, but does make it easier to use, i.e., 

more readable and more writable 

•Optional parts are placed in brackets ([]) 

     <proc_call> -> ident [ ( <expr_list>)] 

•Put alternative parts of RHSs in parentheses and 

separate them with vertical bars   

    <term> -> <term> (+ | -) const 

•Put repetitions (0 or more) in braces ({}) 

     <ident> -> letter {letter | digit} 

Extended BNF 
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BNF: 

<expr> -> <expr> + <term> 

         | <expr> - <term> 

         | <term> 

<term> -> <term> * <factor> 

         | <term> / <factor> 

         | <factor> 

EBNF: 

<expr> -> <term> {(+ | -) <term>} 

<term> -> <factor> {(* | /) <factor>} 

BNF vs EBNF 
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Syntax Graphs 

Syntax Graphs - Put the terminals in circles or ellipses 

and put the nonterminals in rectangles; connect with 

lines with arrowheads 

    e.g., Pascal type declarations 

Provides an intuitive, graphical notation. 

.. 

type_identifier 

( identifier ) 

, 

constant constant 
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Parsing  

• A grammar describes the strings of tokens that are 
syntactically legal in a PL 

• A recogniser simply accepts or rejects strings.  

• A generator produces sentences in the language 
described by the grammar 

• A parser construct a derivation or parse tree for a 
sentence (if possible) 

• Two common types of parsers are: 

– bottom-up or data driven 

– top-down or hypothesis driven 

• A recursive descent parser is a way to implement a 
top-down parser that is particularly simple. 
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• How hard is the parsing task? 

• Parsing an arbitrary context free grammar is O(n3), 
e.g., it can take time proportional the cube of the 
number of symbols in the input. This is bad! 

• If we constrain the grammar somewhat, we can 
always parse in linear time.  This is good! 

• Linear-time parsing 

– LL parsers  

» Recognize LL grammar 

» Use a top-down strategy 

– LR parsers 

» Recognize LR grammar 

» Use a bottom-up strategy 

Parsing complexity 

• LL(n) : Left to right, 
Leftmost derivation, 
look ahead at most n 
symbols. 

• LR(n) : Left to right, 
Right derivation, look 
ahead at most n 
symbols. 
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• How hard is the parsing task? 

• Parsing an arbitrary context free grammar 
is O(n3) in the worst case. 

• E.g., it can take time proportional the cube 
of the number of symbols in the input 

• So what? 

• This is bad! 

Parsing complexity 
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• If it takes t1 seconds to parse your C program 
with n lines of code, how long will it take to 
take if you make it twice as long? 

- time(n) = t1,  time(2n) = 23 * time(n) 

- 8 times longer 

• Suppose v3 of your code is has 10n lines? 

• 103 or 1000 times as long 

• Windows Vista was said to have ~50M lines 
of code 

Parsing complexity 
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• Practical parsers have time complexity that is linear 
in the number of tokens, i.e., O(n) 

• If v2.0 or your program is twice as long, it will take 
twice as long to parse 

• This is achieved by modifying the grammar so it can 
be parsed more easily 

• Linear-time parsing 
– LL parsers  

» Recognize LL grammar 

» Use a top-down strategy 

– LR parsers 

» Recognize LR grammar 

» Use a bottom-up strategy 

 

 

Linear complexity parsing 

• LL(n) : Left to right, 
Leftmost derivation, 
look ahead at most n 
symbols. 

• LR(n) : Left to right, 
Right derivation, look 
ahead at most n 
symbols. 
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• Each nonterminal in the grammar has a      
subprogram associated with it; the 
subprogram parses all sentential forms that 
the nonterminal can generate 

• The recursive descent parsing subprograms 
are built directly from the grammar rules  

• Recursive descent parsers, like other top-
down parsers, cannot be built from left-
recursive grammars (why not?) 

Recursive Decent Parsing 
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Hierarchy of Linear Parsers 

• Basic containment relationship 
– All CFGs can be recognized by LR parser 

– Only a subset of all the CFGs can be recognized by LL parsers 

LL parsing 

CFGs                 LR parsing 
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Recursive Decent Parsing Example 

Example: For the grammar: 
 

 <term> -> <factor> {(*|/)<factor>} 
 

We could use the following recursive 
descent parsing subprogram (e.g., one in 
C) 
 

  void term() {  

    factor();     /* parse first factor*/ 

    while (next_token == ast_code ||  

          next_token == slash_code) { 

      lexical();  /* get next token */ 

      factor();   /* parse next factor */ 

    } 

  }  
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The 

Chomsky 

hierarchy 

•The Chomsky hierarchy 
has four types of languages and their associated grammars and machines.  

•They form a strict hierarchy; that is, regular languages < context-free 
languages < context-sensitive languages < recursively enumerable languages.  

•The syntax of computer languages are usually describable by regular or 
context free languages. 
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Summary 

• The syntax of a programming language is usually 
defined using BNF or a context free grammar 

• In addition to defining what programs are 
syntactically legal, a grammar also encodes 
meaningful or useful abstractions (e.g., block of 
statements) 

• Typical syntactic notions like operator 
precedence, associativity, sequences, optional 
statements, etc. can be encoded in grammars 

• A parser is based on a grammar and takes an input 
string, does a derivation and produces a parse tree. 

 


