
Programming

Languages

Introduction

Overview

• Motivation

• Why study programming
languages?

• Some key concepts

What is a
programming

language?
• Artificial language
• Computers
• Programs
• Syntax
• Semantics

What is a programming language?

“...there is no agreement on what a programming
language really is and what its main purpose is
supposed to be. Is a programming language a
tool for instructing machines? A means of communicating
between programmers? A vehicle for expressing high-
level designs? A notation for algorithms? A way of
expressing relationships between concepts? A tool for
experimentation? A means of controlling computerized
devices? My view is that a general-purpose programming
language must be all of those to serve its diverse set of
users. The only thing a language cannot be – and survive –
is a mere collection of „„neat‟‟ features.”

 -- Bjarne Stroustrup, The Design and Evolution of C++

http://cs.umbc.edu/courses/331/papers/dne_notes.pdf

On language and thought (1)

• Idea: language effects thought

“A strong version of the hypothesis holds that language
determines thought and that linguistic categories limit
and determine cognitive categories. A weaker version
states that linguistic categories and usage influence
thought and certain kinds of non-linguistic behaviour.” –
Wikipedia

• Still controversial for natural languages: eskimos,
numbers, etc.

–See Does Your Language Shape How You Think?

• Does a choice of a programming language effect the
program „ideas‟ you can express?

http://en.wikipedia.org/wiki/Linguistic_relativity
http://www.nytimes.com/2010/08/29/magazine/29language-t.html

On language and thought (2)

• “The tools we use have a profound (and
devious!) influence on our thinking habits,
and therefore, on our thinking abilities.”
-- Edsger Dijkstra, How do we tell truths that
might hurt

• “A language that doesn't affect the way you
think about programming, is not worth knowing”
-- Alan Perlis

Additional Personal Thoughts

Sometimes, language follows thought, doesn‟t lead it:

• Cannot conceive of that which you cannot imagine,
cannot convey that which you cannot describe, but…

• However, you can often cobble together descriptions
of nearly-arbitrary concepts w/limited vocabularies

– E.g. 1: Korean: no plurals

– E.g. 2: Chinese: no gendered pronouns

– E.g. 3: C++ in C: OOP initially implemented as a set of C
macros

Additional Personal Thoughts

Languages sometimes do drive thought:

• People say French is a romantic language

• Gendered nouns affect thoughts

• In programming:

– E.g. 1: Thinking “object-orientedly”

– E.g. 2: Logic programming: no procedural thoughts!

Additional Personal Thoughts

Relevance to studying programming languages:

• We should study many PLs, for:

– Inspiration: e.g., OOP

– Using proper tool:

» “to a hammer…” (but a hammer can be used for many
things, clumsily)

– Efficiency: need to be able to build on existing artifacts,
instead of re-implementing

Some General Underlying Issues

• Why study PL concepts?

• Programming domains

• PL evaluation criteria

• What influences PL design?

• Tradeoffs faced by programming
languages

• Implementation methods

• Programming environments

Why study Programming

Language Concepts?

• Increased capacity to express programming

concepts

• Improved background for choosing appropriate

languages

• Enhanced ability to learn new languages

• Improved understanding of the significance of

implementation

• Increased ability to design new languages

• Mastering different programming paradigms

http://en.wikipedia.org/wiki/Edsger_W._Dijkstra
http://www.cs.umbc.edu/courses/331/papers/ewd498.html
http://www.cs.umbc.edu/courses/331/papers/ewd498.html
http://en.wikipedia.org/wiki/Alan_Perlis

Programming Domains

• Scientific applications

• Business applications

• Artificial intelligence

• Systems programming

• Scripting languages

• Special purpose languages

• Mobile, eductional, Web, massively

parallel, …

Language Evaluation Criteria

• Readability

• Writability

• Reliability

• Cost

• Etc…

Evaluation Criteria: Readability
• How easy is it to read and understand programs written in the

programming language?

• Arguably the most important criterion!

• Factors effecting readability include:

–Overall simplicity: too many features is bad, as is a

multiplicity of features (multiple ways to do same thing)

–Orthogonality: a relatively small set of primitive

constructs combinable in a relatively small number of ways

to build the language‟s control and data structures

»Makes the language easy to learn and read

»Meaning is context independent

–Control statements

–Data type and structures

–Syntax considerations

Evaluation Criteria: Writability

How easy is it to write programs in the

language?

Factors effecting writability:

–Simplicity and orthogonality

–Support for abstraction

–Expressivity

–Fit for the domain and problem

Evaluation Criteria: Reliability

Factors:

 - Type checking

 - Exception handling

 - Aliasing

 - Readability and writability

Evaluation Criteria: Cost

Categories:
–Programmer training

–Software creation

–Compilation

–Execution

–Compiler cost

–Poor reliability

–Maintenance

Evaluation Criteria: others

• Portability

• Generality

• Well-definedness

• Good fit for hardware (e.g., cell) or

environment (e.g., Web)

• etc…

Language Design Influences
Computer architecture

- We use imperative languages, at least in part,

because we use von Neumann machines

• John von Neuman is generally considered to be

the inventor of the "stored program" machines, the

class to which most of today's computers belong

• One CPU + one memory system that contains both

program and data

- Focus on moving data and program instructions

between registers in CPU to memory locations

- Fundamentally sequential

Von Neumann Architecture Language Design Influences:
Programming methodologies

• 50s and early 60s: Simple applications; worry

about machine efficiency

• Late 60s: People efficiency became important;

readability, better control structures. maintainability

• Late 70s: Data abstraction

• Middle 80s: Object-oriented programming

• 90s: distributed programs, Internet

• 00s: Web, user interfaces, graphics, mobile, services

• 10s: parallel computing, cloud computing?,

pervasive computing?, semantic computing?, virtual

machines?

Language Categories

 The big four PL paradigms:
• Imperative or procedural (e.g., Fortran, C)

• Object-oriented (e.g. Smalltalk, Java)

• Functional (e.g., Lisp, ML)

• Rule based (e.g. Prolog, Jess)

Others:
Scripting (e.g., Python, Perl, PHP, Ruby)

Constraint (e.g., Eclipse)

Concurrent (Occam)

…

Language Design Trade-offs

Reliability versus cost of execution
Ada, unlike C, checks all array indices to ensure

proper range but has very expensive compilation

Writability versus readability
(2 = 0 +.= T o.| T) / T <- iN

APL one-liner producing prime numbers from 1

to N, obscure to all but the author

Flexibility versus safety
C, unlike Java, allows one to do arithmetic on

pointers, see worse is better

http://en.wikipedia.org/wiki/Worse_is_better

Implementation methods

• Direct execution by hardware

e.g., native machine language

• Compilation to another language

e.g., C compiled to native machine language for Intel Pentium 4

• Interpretation: direct execution by software

e.g., csh, Lisp (traditionally), Python, JavaScript

• Hybrid: compilation then interpretation

Compilation to another language (aka bytecode), then
interpreted by a „virtual machine‟, e.g., Java, Perl

• Just-in-time compilation

Dynamically compile some bytecode to native code (e.g., V8
javascript engine)

Compilation

Interpretation Hybrid

Implementation issues

1. Complexity of compiler/interpreter

2. Translation speed

3. Execution speed

4. Code portability

5. Code compactness

6. Debugging ease

compile interpret hybrid

1

3

2

4
5

6

Programming Environments
• Collection of tools used in software development, often

including an integrated editor, debugger, compiler,
collaboration tool, etc.

• Modern Integrated Development Environments (IDEs)
tend to be language specific, allowing them to offer
support at the level at which the programmer thinks.

• Examples:
– UNIX -- Operating system with tool collection

– EMACS – a highly programmable text editor

– Smalltalk -- A language processor/environment

– Microsoft Visual C++ -- A large, complex visual environment

– Your favorite Java environment: BlueJ, Jbuilder, J++, …

– Generic: IBM‟s Eclipse

Summary

• Programming languages have many aspects &
uses

• There are many reasons to study the concepts
underlying programming languages

• There are several criteria for evaluating PLs

• Programming languages are constantly
evolving

• Classic techniques for executing PLs are
compilation and interpretation, with variations

